文章 2024-08-07 来自:开发者社区

【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 建模及python代码详解 问题二

更新时间:2023-4-6 相关链接 (1)建模方案 【2023年第十一届泰迪杯数据挖掘挑战赛】C题泰迪内推平台招聘与求职双向推荐系统构建 建模及python代码详解 问题一 【2023年第十一届泰迪杯数据挖掘挑战赛】C题泰迪内推平台招聘与求职双向推荐系统构建 建模及python代码详解 问题二 【2023年第十一届泰迪杯数据挖掘挑战赛】C题泰迪内推平台招聘与求职双向推荐系统构建 建模...

【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 建模及python代码详解 问题二
文章 2024-08-07 来自:开发者社区

【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解

相关链接 (1)建模方案 【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解 (2)相关赛题论文 【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码 【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 23页论文及实现代码 【2023年第十一届泰迪杯数据挖掘...

【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
文章 2024-08-07 来自:开发者社区

【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二

相关链接 【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二 1 题目 完整题目参考问题一的文章基于问题一的分析,建立数学模型,对附件预测数据(predict_sku1.csv)中给出的产品,预测未来 3 月(即 ...

【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二
文章 2024-08-07 来自:开发者社区

【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一

相关链接 (1)建模方案 【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二 (2)相关赛题论文 【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码 【2023年第...

【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
文章 2024-08-05 来自:开发者社区

【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题三方案及Python实现

相关链接 (1)问题一方案及实现博客介绍 (2)问题二方案及实现博客介绍 (3)问题三方案及实现博客介绍 代码下载 https://github.com/BetterBench/BetterBench-Shop 1 题目 完整的题目,请看第一篇文章 【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题一方案及Python实现 问题三:本地旅游图谱构建与分...

【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题三方案及Python实现
文章 2024-08-05 来自:开发者社区

【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题二方案及Python实现

代码下载 https://github.com/BetterBench/BetterBench-Shop 1 问题二题目 完整的题目,请看第一篇文章 【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题一方案及Python实现 问题二:周边游产品热度分析 从附件提供的 OTA、UGC 数据中提取包括景区、酒店、网红景点、民宿、特色餐饮、乡村旅游、文创等旅游产品...

【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题二方案及Python实现
文章 2024-08-05 来自:开发者社区

【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题一方案及Python实现

1 题目 1.1 问题背景 随着互联网和自媒体的繁荣,文本形式的在线旅游(Online Travel Agency,OTA)和游客的用户生成内容(User Generated Content,UGC)数据成为了解旅游市场现状的重要信息来源。OTA 和UGC 数据的内容较为分散和碎片化,要使用它们对某一特定旅游目的地进行研究时,迫切需要一种能够从文本中抽取相关的旅游要素,并挖掘要素之间的相关性...

【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题一方案及Python实现
文章 2024-08-05 来自:开发者社区

【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题二 时间突变分析 Python实现

相关链接 (1)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题一Baseline方案 (2)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题一ARIMA、AutoARIMA、LSTM、Prophet 多方案实现 (3)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题二 时间突变分析 Python实现 (4)【第十届“泰迪杯”数据挖掘...

【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题二 时间突变分析 Python实现
文章 2024-06-16 来自:开发者社区

数据挖掘实战:使用Python进行数据分析与可视化

在当今大数据时代,数据挖掘成为解锁隐藏信息、指导决策的关键技能。Python,凭借其强大的库支持和易学性,已成为数据科学家的首选语言。本文将通过一个实战案例,展示如何使用Python进行数据预处理、分析及可视化,让你领略数据背后的秘密。 环境准备 首先,确保你的环境中安装了Python以及以下库:p...

文章 2024-06-15 来自:开发者社区

数据挖掘实战:Python在金融数据分析中的应用案例

在金融领域,数据挖掘已成为预测市场趋势、评估投资风险、优化投资组合等关键决策过程的核心。Python,凭借其强大的库支持和易用性,成为了金融分析师和数据科学家的首选工具。本文将通过一个实际案例,展示如何使用Python进行金融数据分析,具体包括数据获取、清洗、分析以及建立简单的预测模型。 1. 准备工作 首先,确...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

瓴羊智能服务

专注于为企业提供数智化转型服务,数据知识挖掘机...方法论、数据技术与产品、最佳行业实践都能聊!

+关注