人工智能应用工程师技能提升系列2、——TensorFlow2——keras高级API训练神经网络模型

人工智能应用工程师技能提升系列2、——TensorFlow2——keras高级API训练神经网络模型

TensorFlow 2中的Keras概述 TensorFlow 2中的Keras是一个高级深度学习API,它是TensorFlow的一个核心组件。Keras被设计为用户友好、模块化和可扩展的,允许快速构建和训练深度学习模型。 在TensorFlow 2中,Keras被集成作为TensorFlow的...

TensorFlow 卷积神经网络实用指南:6~10

六、自编码器,变分自编码器和生成对抗网络本章将介绍一种与到目前为止所看到的模型稍有不同的模型。 到目前为止提供的所有模型都属于一种称为判别模型的模型。 判别模型旨在找到不同类别之间的界限。 他们对找到P(Y|X)-给定某些输入X的输出Y的概率感兴趣。 这是用于分类的自然概率分布,因为您通常要在给定一...

深度学习框架TensorFlow入门

24 课时 |
17302 人已学 |
免费
开发者课程背景图

TensorFlow 卷积神经网络实用指南:1~5

TensorFlow 卷积神经网络实用指南:1~5

鱼类识别Python+深度学习人工智能+TensorFlow+卷积神经网络算法

鱼类识别Python+深度学习人工智能+TensorFlow+卷积神经网络算法

一、介绍 鱼类识别系统。使用Python作为主要编程语言开发,通过收集常见的30种鱼类('墨鱼', '多宝鱼', '带鱼', '石斑鱼', '秋刀鱼', '章鱼', '红鱼', '罗非鱼', '胖头鱼', '草鱼', '银鱼', '青鱼', '马头鱼', '鱿鱼', '鲇鱼', '鲈鱼', '鲍鱼'...

tensorflow循环神经网络(RNN)文本生成莎士比亚剧集

tensorflow循环神经网络(RNN)文本生成莎士比亚剧集

我们将使用 Andrej Karpathy 在《循环神经网络不合理的有效性》一文中提供的莎士比亚作品数据集。给定此数据中的一个字符序列 (“Shakespear”),训练一个模型以预测该序列的下一个字符(“e”)。通过重复调用该模型,可以生成更长的文本序列。注意:启用 GPU 加速可以更快地执行此笔...

用TensorBoard可视化tensorflow神经网络模型结构与训练过程的方法

用TensorBoard可视化tensorflow神经网络模型结构与训练过程的方法

  本文介绍基于TensorBoard工具,对tensorflow库构建的神经网络模型加以可视化,并对其训练过程中的损失函数(Loss)、精度指标(Metric)等的变化情况加以可视化的方法。  在之前的两篇文章基于Python TensorFlow Estimator的深度学习回归与分类代码——D...

基于Python TensorFlow Keras的深度学习回归代码——keras.Sequential深度神经网络

基于Python TensorFlow Keras的深度学习回归代码——keras.Sequential深度神经网络

1 写在前面前期一篇详细介绍了基于TensorFlow tf.estimator接口的深度学习网络;而在TensorFlow 2.0中,新的Keras接口具有与 tf.estimator接口一致的功能,且其更易于学习,对于新手而言友好程度更高;在TensorFlow官网也建议新手从Keras接口入手...

【Keras+计算机视觉+Tensorflow】DCGAN对抗生成网络在MNIST手写数据集上实战(附源码和数据集 超详细)

【Keras+计算机视觉+Tensorflow】DCGAN对抗生成网络在MNIST手写数据集上实战(附源码和数据集 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~一、生成对抗网络的概念生成对抗网络(GANs,Generative Adversarial Nets),由Ian Goodfellow在2014年提出的,是当今计算机科学中最有趣的概念之一。GAN最早提出是为了弥补真实数据的不足,生成高质量的人工数...

【Keras+计算机视觉+Tensorflow】生成对抗神经网络中DCGAN、CycleGAN网络的讲解(图文解释 超详细)

【Keras+计算机视觉+Tensorflow】生成对抗神经网络中DCGAN、CycleGAN网络的讲解(图文解释 超详细)

觉得有帮助麻烦点赞关注收藏~~~一、生成对抗网络简介生成对抗网络(GANs,Generative Adversarial Nets),由Ian Goodfellow在2014年提出的,是当今计算机科学中最有趣的概念之一。GAN最早提出是为了弥补真实数据的不足,生成高质量的人工数据。GAN的主要思想是...

【Tensorflow深度学习】优化算法、损失计算、模型评估、向量嵌入、神经网络等模块的讲解(超详细必看)

觉得有帮助请点赞关注收藏~~~一、优化算法1)Adam算法: 基于一阶或二阶动量(Moments)的随机梯度下降算法,动量是非负超参数,主要作用是调整方向梯度下降并抑制波动。此算法适用于数据量和参数规模较大的场合。(2)SGD算法: 动量梯度下降算法。(3)Adagrad算法: 学习率与参数更新频率...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

社区圈子

人工智能
人工智能
了解行业+人工智能最先进的技术和实践,参与行业+人工智能实践项目
3282+人已加入
加入
相关电子书
更多
深度学习框架实战-Tensorflow
深度学习+大数据 TensorFlow on Yarn
使用TensorFlow搭建智能开发系统自劢生成App UI代码
立即下载 立即下载 立即下载

TensorFlow网络相关内容