吴恩达《机器学习》课程总结(4)多变量线性回归

4.1多维特征 上图中列数即为特征的个数,行数是样本数。函数假设如下: 其中x0=1。 4.2多变量梯度下降 和单变量的损失函数相同: 其中, 求导迭代如下: 4.3梯度下降法实践1-特征缩放 特征之间的尺度变化相差很大(如一个是0-1000,一个是0-5),梯度算法需要非常多次的迭代才能收敛,如下...

吴恩达《机器学习》课程总结(2)单变量线性回归

2.1模型表示 (1)监督学习中的回归问题案例房价预测 (2)监督算法的工作方式 案例中:m表示训练集的数量,x代表特征/输入变量,y代表目标变量/输出变量,(x,y)代表实例,(x(i),y(i))代表第i个观察实例,h代表假设/函数/输入到输出的映射。 (3)房价预测的一种表达方式:h(Θ)=Θ...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

社区圈子

阿里云机器学习平台PAI
阿里云机器学习平台PAI
阿里云机器学习PAI(Platform of Artificial Intelligence)面向企业及开发者,提供轻量化、高性价比的云原生机器学习平台,涵盖PAI-iTAG智能标注平台、PAI-Designer(原Studio)可视化建模平台、PAI-DSW云原生交互式建模平台、PAI-DLC云原生AI基础平台、PAI-EAS云原生弹性推理服务平台,支持千亿特征、万亿样本规模加速训练,百余落地场景,全面提升工程效率。
2435+人已加入
加入
相关电子书
更多
大规模机器学习在蚂蚁+阿里的应用
基于Spark的面向十亿级别特征的 大规模机器学习
基于Spark的大规模机器学习在微博的应用
立即下载 立即下载 立即下载