吴恩达深度学习课程笔记-Classes 3

Classes 3 结构化机器学习项目 1 机器学习策略 在机器学习中,可以观察你的系统,然后说这一部分是错的,它在训练集上做的不好、在开发集上做的不好、它在测试集上做的不好,或者它在测试集上做的不错,但在现实世界中不好,这就很好。必须弄清楚到底是什么地方出问题了,然后刚好有对应的旋钮,或者一组对应...

吴恩达深度学习课程笔记-Classes 2

Classes 2 深度学习 1 深度学习实践 1.1 训练集、验证集、测试集(Train / Dev / Test sets) 对训练执行算法,通过验证集或简单交叉验证集选择最好的模型。在机器学习发展的小数据量时代,常见做法是将所有数据三七分,就是人们常说的 70%验证集,30%测试集,如果没有明...

高校精品课-复旦大学-机器学习与深度学习

1 课时 |
105 人已学 |
免费

深度学习框架TensorFlow入门

24 课时 |
17302 人已学 |
免费

深度学习与自动驾驶

12 课时 |
3062 人已学 |
免费
开发者课程背景图

吴恩达深度学习课程笔记-Classes 1

详细笔记地址: http://www.ai-start.com/dl2017/这里只是做些自己的摘抄与理解 写在前面 吴恩达(英语:Andrew Ng)是斯坦福大学计算机科学系和电气工程系的客座教授,曾任斯坦福人工智能实验室主任。他还与达芙妮·科勒一起创建了在线教育平台Coursera。吴恩达老师的...

吴恩达《深度学习》第四门课(1)卷积神经网络

1.1计算机视觉 (1)计算机视觉的应用包括图像分类、目标检测、图像分割、风格迁移等,下图展示了风格迁移案例: (2)图像的特征量非常之大,比如一个3通道的1000*1000的照片,其特征为3*1000*1000达到300万,如果第一个隐藏层有1000个单元那么W[1]有20亿个参数,计算量不仅大,...

吴恩达《深度学习》第三门课(1)机器学习策略一

1.1为什么是ML策略 (1)当对一个实际的应用系统进行优化时,可能有很多想法:如提高数据量,提高网络深度,正则化等等,一个错误的选择可能浪费非常多的时间,本课就是让你在面对很多选择时做出正确的选择,这就是ML策略。提高效率,让你的深度学习系统更快投入使用。 1.2正交化 (1)使用以下的老式电视机...

吴恩达《深度学习》第二门课(3)超参数调试、Batch正则化和程序框架

3.1调试处理 (1)不同超参数调试的优先级是不一样的,如下图中的一些超参数,首先最重要的应该是学习率α(红色圈出),然后是Momentum算法的β、隐藏层单元数、mini-batch size(黄色圈出)、再之后是Layer、learning rate decay(紫色圈出)、最后是Adam算法中...

吴恩达《深度学习》第二门课(2)优化算法

2.1Mini-batch梯度下降 (1)例如有500万个训练样本,这时可以每1000个组成一个Mini-batch,共用5000个Mini-batch。主要是为了加快训练。 (2)循环完所有的训练样本称为(1 epoch)。 (3)使用大括号X{t},Y{t}表示一个Mini-batch。(小括号...

吴恩达《深度学习》第二门课(1)深度学习的实用层面

1.1训练,验证,测试集(Train/Dev/Test sets) (1)深度学习是一个按照下图进行循环的快速迭代的过程,往往需要多次才能为应用程序找到一个称心的神经网络。 (2)在机器学习中,通常将样本分成训练集,验证集和测试集三部分,数据规模相对较小,适合传统的划分比例(如6:2:2),数据集规...

吴恩达《深度学习》第一门课(4)深层神经网络

4.1深层神经网络 (1)到底是深层还是浅层是一个相对的概念,不必太纠结,以下是一个四层的深度神经网络: (2)一些符号定义: a[0]=x(输入层也叫做第0层) L=4:表示网络的层数 g:表示激活函数 第l层输出用a[l],最终的输出用a[L]表示 n[1]=5:表示第一层有五个神经元,第l层神...

吴恩达《深度学习》第一门课(3)浅层神经网络

3.1神经网络概述 (1)神经网络每个单元相当于一个逻辑回归,神经网络由逻辑回归的堆叠起来。下图是网络结构: 针对网络结构进行计算: 1.第一层的正向传播 2.第一层的反向传播 3.第二层的反向传播(正向只要把微分符号去掉即可) 3.2神经网络的表示 (1)神经网络各层分别较输入层、掩藏层和输出层,...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

社区圈子

智能引擎技术
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
4027+人已加入
加入
相关电子书
更多
深度学习框架实战-Tensorflow
TensorRT Introduction
端上智能-深度学习模型压缩与加速
立即下载 立即下载 立即下载

深度学习吴恩达相关内容