《中国人工智能学会通讯》——6.4 基于深度学习的知识图谱构建

6.4 基于深度学习的知识图谱构建 随着深度学习在自然语言处理领域应用的不断深入,人们也开始尝试将深度神经网络用于知识图谱的自动构建。在此,以实体和关系的表示学习技术为基础,讨论深度学习在命名实体识别、关系抽取、关系补全等任务上的应用。 命名实体识别 命名实体识别是从文本中提取出和人名、地名等特定的...

《中国人工智能学会通讯》——2.27 利用深度学习改进统计机器翻译

2.27 利用深度学习改进统计机器翻译 利用深度学习改进统计机器翻译的核心思想是以统计机器翻译为主体,使用深度学习改进其中的关键模块,如语言模型[1] 、翻译模型 [2] 、调序模型 [3] 、词语对齐[4]等。 深度学习能够帮助机器翻译缓解数据稀疏问题。以语言模型为例。语言模型能够量化译文的流利度...

高校精品课-复旦大学-机器学习与深度学习

1 课时 |
105 人已学 |
免费

深度学习框架TensorFlow入门

24 课时 |
17302 人已学 |
免费

深度学习与自动驾驶

12 课时 |
3062 人已学 |
免费
开发者课程背景图

《中国人工智能学会通讯》——2.26 基于深度学习的机器翻译研究进展

2.26 基于深度学习的机器翻译研究进展 机器翻译研究如何利用计算机实现自然语言的自动转换,是人工智能和自然语言处理的重要研究领域之一。机器翻译大致可分为理性主义和经验主义两类方法。 基于理性主义的机器翻译方法 , 主张由人类专家通过编纂规则的方式 , 将自然语言之间的转换规律“传授”给计算机。这种...

《中国人工智能学会通讯》——6.23 Yoshua Bengio: 深度学习崛起带来人工智能的春天

6.23 Yoshua Bengio: 深度学习崛起带来人工智能的春天 20 世纪 50 年代,计算机开始在象棋领域战胜人类,证明数学定理,让人类狂喜不已。60 年代,人们越来越希望,不久以后,科学家就能用硬件和软件复制人类大脑,“人工智能”可以完成任何任务,其表现不逊于人类。1967 年,今年年初...

《中国人工智能学会通讯》——1.40 深度学习

1.40 深度学习 罗曼·扬波利斯基是路易斯维尔大学网络安全实验室主任。他认为,2016 年,我们将看到卷积神经网络(深度学习)领域的迅速发展,超级计算机的使用将使这个领域成为 2016 年人工智能发展的重点。 浅层学习是机器学习的第一次浪潮,主要是计算机系统从大量训练样本中学习统计规律,对未知事件...

中国人工智能学会通讯——迎接深度学习的“大”挑战(上)

摘要: 本部分主要介绍了近年人工智能所取得的应用成果、什么是深度神经网络以及它所带来的挑战等问题。 为什么要讲这个题目呢?深度学习这几年改变了很多行业的状态,今天上午张老师应该也讲了很多关于神经网络的话题,包括怎么学习深度神经网络的结构。今天我会从另一个角度看一看深度学习到底有哪些挑战,这些挑战怎么...

中国人工智能学会通讯——互联网搜索技术的前沿探索 4 深度学习与信息检索

4 深度学习与信息检索 近年来,深度学习技术在图像、语音、自然语言处理等领域取得了显著的突破,已经开始延伸到信息检索领域。深度学习模型强大的表达能力和学习能力,可以为信息检索中语义信息表征、相关性推理决策,以及复杂交互过程的建模提供良好的支撑。然而,目前已有的结果显示,深度学习应用于检索并不是其他领...

中国人工智能学会通讯——当知识图谱“遇见”深度学习 1.4 结束语

1.4 结束语 随着深度学习研究的进一步深入,如何 有效利用大量存在的先验知识,进而降低 模型对于大规模标注样本的依赖,逐渐成 为主流的研究方向之一。知识图谱的表示学习为这一方向的探索奠定了必要的基础。 近期出现的将知识融合入深度神经网络模 型的一些开创性工作也颇具启发性;但总 体而言,当前的深度学...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

社区圈子

智能引擎技术
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
4026+人已加入
加入
相关电子书
更多
深度学习框架实战-Tensorflow
TensorRT Introduction
端上智能-深度学习模型压缩与加速
立即下载 立即下载 立即下载