目标检测算法——Faster R-CNN
1.Faster R-CNN简介Faster R-CNN,论文名称:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,原文链接同样使用VGG16作为网络的backbone,推理速度在GPU上达到5fps(包括候选区域的生成),准确率也有进一步的提升。在2015年的ILSVRC以及COCO竞....

目标检测算法——Fast R-CNN
1.Fast R-CNN简介Fast R-CNN其论文的名字就是 Fast R-CNN,原文链接。Fast R-CNN与R-CNN相同,同样使用VGG16作为网络的backbone,与R-CNN相比训练时间快9倍,测试推理时间快213倍,准确率从62%提升至66%(再Pascal VOC数据集上)。Fast R-CNN 算法流程可分为3个步骤一张图像生成1K~2K个 候选区域(使用Selecti....

目标检测算法——R-CNN
1.R-CNN简介R-CNN(Region with CNN feature)文章的全称为:Rich feature hierarchies for accurate object detection andsemantic segmentation,原文链接翻译过来就是针对高准确度的目标检测与语义分割的多特征层级,通俗地来讲就是一个用来做目标检测和语义分割的神经网络。这篇论文发布时间是 201....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
+关注