《计算机视觉:模型、学习和推理》一3.8 正态逆维希特分布
3.8 正态逆维希特分布 正态逆维希特分布由一个D×1维向量μ和D×D维正定矩阵Σ定义。同样,它可以用来描述多元正态分布中参数的概率分布。正态逆维希特分布有四个参数α,ψ,γ,δ,其中,α,γ是正的标量,δ为D×1维向量,ψ是D×D维正定矩阵其中,ΓD[]是多元伽马函数,Tr[ψ]是矩阵ψ的秩(见附录C.2.4节)。它也可以简写为:正态逆维希特分布的数学形式很模糊。然而,任何给定有效的均值向量....
《计算机视觉:模型、学习和推理》一3.6 正态逆伽马分布
3.6 正态逆伽马分布 正态逆伽马分布(见图3-6)由μ和σ2两个参数定义,其中,前者可取任意值,后者仅取大于零的值。同样,该分布可以定义正态分布中参数方差和均值的分布。正态逆伽马分布有4个参数α、β、γ、δ,其中,前三个参数为正实数,最后一个参数可取任意值。其表达式为:或者简写为:图3-6 正态逆伽马分布由一个二元连续变量μ,σ2定义的分布定义,其中,前者可取任意值,后者为非负值。a) 参数为....
《计算机视觉:模型、学习和推理》一3.7 多元正态分布
3.7 多元正态分布 图3-7 多元正态分布建立一个由D维变量x=[x1,…,xD]T决定的模型,其中x的每个元素x1,…,xD都是连续的且为任意实数。该分布由D×1维均值向量μ和D×D维协方差矩阵Σ定义,μ决定分布的均值,协方差矩阵Σ决定分布的形状。分布的等值线图是椭圆,椭圆的中心由μ决定,形状由Σ决定。该图描述了一个二元分布,其中协方差通过绘制其中一个椭圆描述多元正态分布或多元高斯分布是一个....
《计算机视觉:模型、学习和推理》一3.5 一元正态分布
3.5 一元正态分布 图3-5 一元正态分布定义在x∈R上有两个参数{μ,σ2}。均值μ决定期望值,方差σ2决定均值的集中度,当σ2增大时,分布函数变得又宽又扁一元正态分布或者高斯分布(见图3-5)由一个连续值x∈[-∞,∞]定义。在视觉领域中,通常可以忽略像素的灰度值是量化的这个事实,并用连续正态分布对其建模。真实世界的状态也可以用正态分布描述。例如,到一个物体的距离就可以用这种方法来表示。正....
《计算机视觉:模型、学习和推理》——3.8 正态逆维希特分布
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第3章,第3.8节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 3.8 正态逆维希特分布 正态逆维希特分布由一个D×1维向量μ和D×D维正定矩阵Σ定义。同样,它可以用来描述多元正态分布中参数的概率分布。正态逆维希特分布有四个参数α,ψ,γ,δ,其中,α,γ是正的标量,δ为....
《计算机视觉:模型、学习和推理》——3.7 多元正态分布
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第3章,第3.7节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 3.7 多元正态分布 图3-7 多元正态分布建立一个由D维变量x=[x1,…,xD]T决定的模型,其中x的每个元素x1,…,xD都是连续的且为任意实数。该分布由D×1维均值向量μ和D×D维协方差矩阵Σ定义.....
《计算机视觉:模型、学习和推理》——3.6 正态逆伽马分布
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第3章,第3.6节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 3.6 正态逆伽马分布 正态逆伽马分布(见图3-6)由μ和σ2两个参数定义,其中,前者可取任意值,后者仅取大于零的值。同样,该分布可以定义正态分布中参数方差和均值的分布。正态逆伽马分布有4个参数α、β、γ、δ....
《计算机视觉:模型、学习和推理》——3.5 一元正态分布
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第3章,第3.5节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 3.5 一元正态分布 图3-5 一元正态分布定义在x∈R上有两个参数{μ,σ2}。均值μ决定期望值,方差σ2决定均值的集中度,当σ2增大时,分布函数变得又宽又扁 一元正态分布或者高斯分布(见图3-5)由一.....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
计算机视觉
包含图像分类、图像生成、人体人脸识别、动作识别、目标分割、视频生成、卡通画、视觉评价、三维视觉等多个领域
+关注