算法 云计算背景

[帮助文档] 机器学习线性支持向量机算法组件的配置及示例

支持向量机SVM(Support Vector Machine)是基于统计学习理论的一种机器学习方法,通过寻求结构风险最小化,提高学习机泛化能力,从而实现经验风险和置信范围最小化。本文介绍线性支持向量机算法组件的配置方法及使用示例。

②机器学习分类算法之XGBoost(集成学习算法)

②机器学习分类算法之XGBoost(集成学习算法)

调参步骤及思想选择较高的学习速率(learning rate)。一般情况下,学习速率的值为0.1。但是,对于不同的问题,理想的学习速率有时候会在0.05到0.3之间波动。选择对应于此学习速率的理想决策树数量。XGBoost有一个很有用的函数“cv”,这个函数可以在每一次迭代中使用交叉验证,并返回理想...

相册服务中的故事生成算法介绍

1 课时 |
31 人已学 |
免费

Go语言核心编程 - 数据结构和算法

47 课时 |
1657 人已学 |
免费

神经网络概览及算法详解

36 课时 |
801 人已学 |
免费
开发者课程背景图
①机器学习分类算法之XGBoost(集成学习算法)

①机器学习分类算法之XGBoost(集成学习算法)

走进XGBoost什么是XGBoost?全称:eXtreme Gradient Boosting作者:陈天奇(华盛顿大学博士)基础:GBDT所属:boosting迭代型、树类算法。适用范围:分类、回归优点:速度快、效果好、能处理大规模数据、支持多种语言、支持自定义损失函数等等。缺点:算...

③机器学习分类算法之随机森林(集成学习算法)

③机器学习分类算法之随机森林(集成学习算法)

 min_samples_split优化# min_samples_split优化 scorel = [] for i in range(2,20): RFC = RandomForestClassifier(max_depth=20,n_estimators=51,min_samples...

②机器学习分类算法之随机森林(集成学习算法)

②机器学习分类算法之随机森林(集成学习算法)

如何调参对于随机森林如何调参,这里给出一些好的建议,如果你是网格搜索,而且是那种毫无规则的网格搜索,那么模型跑个三天三夜也未必有结果,此外,你的机器可能没有这么好的配置,根本跑不动!在下图中,我们可以看到这些参数对Random Forest整体模型性能的影响:...

①机器学习分类算法之随机森林(集成学习算法)

①机器学习分类算法之随机森林(集成学习算法)

什么是集成学习?定义:本身并不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务,以达到获得比单个学习器更好的学习效果的一种机器学习方法。高端点的说叫“博彩众长”,庸俗的说叫“三个臭皮匠,顶个诸葛亮”。思路:在对新的实例进行分类的时候,把若干个单个分类器集成起来&...

更新时间 2023-01-16 11:56:51

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

社区圈子

智能引擎技术
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
4025+人已加入
加入
相关电子书
更多
图解算法小抄
网易云音乐音视频算法处理的 Serverless 探索之路
阿里技术参考图册-算法篇
立即下载 立即下载 立即下载

算法机器学习相关内容

算法您可能感兴趣