[帮助文档] 机器学习线性支持向量机算法组件的配置及示例
支持向量机SVM(Support Vector Machine)是基于统计学习理论的一种机器学习方法,通过寻求结构风险最小化,提高学习机泛化能力,从而实现经验风险和置信范围最小化。本文介绍线性支持向量机算法组件的配置方法及使用示例。

③机器学习分类算法之随机森林(集成学习算法)
min_samples_split优化# min_samples_split优化 scorel = [] for i in range(2,20): RFC = RandomForestClassifier(max_depth=20,n_estimators=51,min_samples...

②机器学习分类算法之随机森林(集成学习算法)
如何调参对于随机森林如何调参,这里给出一些好的建议,如果你是网格搜索,而且是那种毫无规则的网格搜索,那么模型跑个三天三夜也未必有结果,此外,你的机器可能没有这么好的配置,根本跑不动!在下图中,我们可以看到这些参数对Random Forest整体模型性能的影响:...

①机器学习分类算法之随机森林(集成学习算法)
什么是集成学习?定义:本身并不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务,以达到获得比单个学习器更好的学习效果的一种机器学习方法。高端点的说叫“博彩众长”,庸俗的说叫“三个臭皮匠,顶个诸葛亮”。思路:在对新的实例进行分类的时候,把若干个单个分类器集成起来&...
更新时间 2023-01-21 12:13:13
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。