文章 2023-01-28 来自:开发者社区

基于PSO粒子群优化算法的TSP路径规划matlab仿真

1.算法描述 粒子群优化算法(PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。 在求解TSP这种整数规划问题的时候, PSO显然与ACO不同, PSO需要对算法本身进行一定的修改, 毕竟PSO刚开始是应用在求解连续优化问题上的.     在路径规划中,我们将每一条路径规划为一个粒子,每个粒子群群有 n 个粒 子,...

基于PSO粒子群优化算法的TSP路径规划matlab仿真
文章 2023-01-27 来自:开发者社区

m基于PSO粒子群优化的立体仓库货位优化matlab仿真

1.算法描述 PSO算法是一种随机的、并行的优化算法。它的优点是:不要求被优化函数具有可微、可导、连续等性质,收敛速度较快,算法简单,容易编程实现。然而,PSO算法的缺点在于:(1)对于有多个局部极值点的函数,容易陷入到局部极值点中,得不到正确的结果。造成这种现象的原因有两种,其一是由于待优化函数的性质;其二是由于微粒群算法中微粒的多样性迅速消失,造成早熟收敛。这两个因素通常密不可分地纠缠在...

m基于PSO粒子群优化的立体仓库货位优化matlab仿真
文章 2023-01-27 来自:开发者社区

m基于PSO粒子群优化的地震灾后救援物资仓库最优存放方案matlab仿真

1.算法描述PSO算法是一种随机的、并行的优化算法。它的优点是:不要求被优化函数具有可微、可导、连续等性质,收敛速度较快,算法简单,容易编程实现。然而,PSO算法的缺点在于:(1)对于有多个局部极值点的函数,容易陷入到局部极值点中,得不到正确的结果。造成这种现象的原因有两种,其一是由于待优化函数的性质;其二是由于微粒群算法中微粒的多样性迅速消失,造成早熟收敛。这两个因素通常密不可分地纠缠在一起。....

m基于PSO粒子群优化的地震灾后救援物资仓库最优存放方案matlab仿真
文章 2023-01-25 来自:开发者社区

m基于PSO粒子群优化算法的最优样本组合策略分析matlab仿真

1.算法描述 PSO算法是一种随机的、并行的优化算法。它的优点是:不要求被优化函数具有可微、可导、连续等性质,收敛速度较快,算法简单,容易编程实现。然而,PSO算法的缺点在于:(1)对于有多个局部极值点的函数,容易陷入到局部极值点中,得不到正确的结果。造成这种现象的原因有两种,其一是由于待优化函数的性质;其二是由于微粒群算法中微粒的多样性迅速消失,造成早熟收敛。这两个因素通常密不可分地纠缠在...

m基于PSO粒子群优化算法的最优样本组合策略分析matlab仿真
文章 2023-01-25 来自:开发者社区

m基于GA遗传优化的BP神经网络时间序列预测算法matlab仿真

1.算法描述 将遗传算法(GA)与BP神经网络相结合,使用GA优化BP神经网络的主要参数。然后将影响输出响应值的多个特征因素作为GA-BP神经网络模型的输入神经元, 输出响应值作为输出神经元进行预测测试。BP神经网络的网络层包括输入层,隐含层和输出层三个网络层次,其基本结构如下图所示: 基于三层网络结构的BP神经网络具有较为广泛的应用场合和训练效果。 在BP神经网络中,隐含层数量对神经...

m基于GA遗传优化的BP神经网络时间序列预测算法matlab仿真
文章 2023-01-23 来自:开发者社区

基于ACO蚁群算法的tsp优化问题matlab仿真

1.算法描述 “基本原理 蚁群算法(Ant Colony Optimization,ACO)是一种基于种群寻优的启发式搜索算法,有意大利学者M.Dorigo等人于1991年首先提出。该算 法受到自然界真实蚁群集体在觅食过程中行为的启发,利用真实蚁群通过个体间的信息传递、搜索从蚁穴到食物间的最短路径等集体寻优特 征,来解决一些离散系统优化中的困难问题。 算法基本思想: (1)根据具体问题设...

基于ACO蚁群算法的tsp优化问题matlab仿真
文章 2023-01-23 来自:开发者社区

m基于PSO粒子群优化的柔性作业车间调度问题matlab仿真,并输出甘特图

1.算法描述 PSO算法是一种随机的、并行的优化算法。它的优点是:不要求被优化函数具有可微、可导、连续等性质,收敛速度较快,算法简单,容易编程实现。然而,PSO算法的缺点在于:(1)对于有多个局部极值点的函数,容易陷入到局部极值点中,得不到正确的结果。造成这种现象的原因有两种,其一是由于待优化函数的性质;其二是由于微粒群算法中微粒的多样性迅速消失,造成早熟收敛。这两个因素通常密不可分地纠缠在...

m基于PSO粒子群优化的柔性作业车间调度问题matlab仿真,并输出甘特图
文章 2023-01-23 来自:开发者社区

m基于NSGAII优化算法的微网系统的多目标优化规划matlab仿真

1.算法描述 NSGA-II是基于的非支配排序的方法,在NSGA上进行改进,也是多目标进化优化领域一个里程碑式的一个算法。 NSGA-Ⅱ算法是 Srinivas 和 Deb 于 2000 年在 NSGA 的基础上提出的,它比 NSGA算法更加优越:它采用了快速非支配排序算法,计算复杂度比 NSGA 大大的降低;采用了拥挤度和拥挤度比较算子,代替了需要指定的共享半径 shareQ,并在快...

m基于NSGAII优化算法的微网系统的多目标优化规划matlab仿真
文章 2023-01-21 来自:开发者社区

m基于蚁群优化模糊控制的机器人路线规划和避障算法matlab仿真

1.算法描述 蚁群算法是受到对真实蚂蚁群觅食行为研究的启发而提出。生物学研究表明:一群相互协作的蚂蚁能够找到食物和巢穴之间的最短路径,而单只蚂蚁则不能。生物学家经过大量细致观察研究发现,蚂蚁个体之间的行为是相互作用相互影响的。蚂蚁在运动过程中,能够在它所经过的路径上留下一种称之为信息素的物质,而此物质恰恰是蚂蚁个体之间信息传递交流的载体。蚂蚁在运动时能够感知这种物质,并且习惯于追踪此物质爬行...

m基于蚁群优化模糊控制的机器人路线规划和避障算法matlab仿真
文章 2023-01-20 来自:开发者社区

m基于梯度优化的混沌PSO磁悬浮球系统模型优化的matlab仿真

1.算法描述 基本确定融合后的优化控制算法,即混沌粒子群优化算法,将该算法应用于对PID的参数整定上,通过仿真验证算法的可行性。将混沌思想引入PSO算法,前期工作首先对混沌算法局部搜索能力差和算法可能需要花费长时间才能取得较好优化性能的不足进行了改进,提出梯度优化混沌算法的思想,基本实现了梯度算法与混沌算法的融合,实现了用梯度算法改善混沌算法的预期目的,达到了取长补短的效果,使得该算法即...

m基于梯度优化的混沌PSO磁悬浮球系统模型优化的matlab仿真

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

DataWorks

DataWorks基于MaxCompute/Hologres/EMR/CDP等大数据引擎,为数据仓库/数据湖/湖仓一体等解决方案提供统一的全链路大数据开发治理平台。作为阿里巴巴数据中台的建设者,DataWorks从2009年起不断沉淀阿里巴巴大数据建设方法论,同时与数万名政务/金融/零售/互联网/能源/制造等客户携手,助力产业数字化升级。

+关注