文章 2022-12-10 来自:开发者社区

多分类机器学习中数据不平衡的处理(NSL-KDD 数据集+LightGBM)

前言数据不平衡问题在机器学习分类问题中很常见,尤其是涉及到“异常检测"类型的分类。因为异常一般指的相对不常见的现象,因此发生的机率必然要小很多。因此正常类的样本量会远远高于异常类的样本量,一般高达几个数量级。比如:疾病相关的样本,正常的样本会远高于疾病的样本,即便是当下流行的COVID-19。比如kaggle 竞赛的信用卡交易欺诈(credit card fraud),正常交易与欺诈类交易比例大....

多分类机器学习中数据不平衡的处理(NSL-KDD 数据集+LightGBM)
文章 2017-11-12 来自:开发者社区

机器学习中的数据不平衡解决方案大全

在机器学习任务中,我们经常会遇到这种困扰:数据不平衡问题。        数据不平衡问题主要存在于有监督机器学习任务中。当遇到不平衡数据时,以总体分类准确率为学习目标的传统分类算法会过多地关注多数类,从而使得少数类样本的分类性能下降。绝大多数常见的机器学习算法对于不平衡数据集都不能很好地工作。    &nbs...

文章 2017-08-02 来自:开发者社区

如何解决机器学习中的数据不平衡问题?

在机器学习任务中,我们经常会遇到这种困扰:数据不平衡问题。 数据不平衡问题主要存在于有监督机器学习任务中。当遇到不平衡数据时,以总体分类准确率为学习目标的传统分类算法会过多地关注多数类,从而使得少数类样本的分类性能下降。绝大多数常见的机器学习算法对于不平衡数据集都不能很好地工作。 本文介绍几种有效的解决数据不平衡情况下有效训练有监督算法的思路: 1、重新采样训练集 可以使用不同的数据集。有两种方....

如何解决机器学习中的数据不平衡问题?

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

机器学习平台 PAI更多数据相关