探究数据仓库与数据湖的异同及应用场景
一、数据仓库数据仓库是一种经过加工后的结构化数据集合,用于支持企业的决策制定。通常情况下,数据仓库包含历史数据,以及从不同的操作性系统中汇总而来的数据。数据仓库的主要特点是对历史数据进行存储和管理,具有高度的结构化,容易实现数据一致性和数据质量控制等优势。数据仓库可基于ETL(抽取、转换、加载)工具...
基于Apache Hudi构建数据湖的典型应用场景介绍
1. 传统数据湖存在的问题与挑战传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化。虽然能够在海量批处理场景中取得不错的效果,但依然存在如下现状问题:问题一:不支持事务由于传统大数据方案不支持事务,有可能会读到未写完成的数据,造成数据统计错误。为了规避该问题,通常控制读写任务顺序调用,在保....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。