基于CNN+LSTM深度学习网络的时间序列预测matlab仿真

基于CNN+LSTM深度学习网络的时间序列预测matlab仿真

1.算法运行效果图预览 2.算法运行软件版本MATLAB2022a 3.算法理论概述 时间序列预测是指利用历史数据来预测未来数据点或数据序列的任务。在时间序列分析中,数据点的顺序和时间间隔都是重要的信息。CNN+LSTM网络结合了卷积神经网络(CNN)的特征提取能力和长短时记忆网络(LSTM)的时序...

深度学习在时间序列预测的总结和未来方向分析

深度学习在时间序列预测的总结和未来方向分析

我们这篇文章就来总结下2023年深度学习在时间序列预测中的发展和2024年未来方向分析 Neurips 2023 在今年的NIPs上,有一些关于transformer 、归一化、平稳性和多模态学习的有趣的新论文。但是在时间序列领域没有任何重大突破,只有一些实际的,渐进的性能改进和有趣的概念证明。 1...

高校精品课-复旦大学-机器学习与深度学习

1 课时 |
105 人已学 |
免费

深度学习框架TensorFlow入门

24 课时 |
17302 人已学 |
免费

深度学习与自动驾驶

12 课时 |
3062 人已学 |
免费
开发者课程背景图
利用深度学习生成数据的时间序列预测(Matlab代码实现)

利用深度学习生成数据的时间序列预测(Matlab代码实现)

💥1 概述数据分析研究目前仍是行业热点,相关学者从数据分析关键技术中的异常检测、入侵检测、时间序列预测等角度展开研究。然而,现有研究在时间序列预测方面存在诸多局限性,没有考虑到复杂且规模庞大数据的计算消耗,忽视了非平稳数据的时间协变量漂移问题,缺乏一个实时、精准且泛化性能强的预测模型。本文研究了使...

基于LSTM深度学习网络的时间序列预测matlab仿真

基于LSTM深度学习网络的时间序列预测matlab仿真

1.算法理论概述 时间序列预测是一类重要的预测问题,在很多领域都有着广泛的应用,如金融、交通、气象等。然而,由于时间序列数据本身具有时序性和相关性,因此预测难度较大。传统的时间序列预测方法大多采用统计学方法,如ARIMA模型、指数平滑法等,但这些方法在处理非线性、非平稳、非高斯的时间序列数据时效果较...

【MATLAB第25期】基于MATLAB的LSTM深度学习模型的自动检测时间序列数据峰值算法

【MATLAB第25期】基于MATLAB的LSTM深度学习模型的自动检测时间序列数据峰值算法

【MATLAB第25期】基于MATLAB的LSTM深度学习模型的自动检测时间序列数据峰值算法一、主程序代码clear, clc, close all addpath(genpath('./functions')) %导入LSTM模型函数 %% 1.导入数据 load('ECGData.mat'); ...

2022年深度学习在时间序列预测和分类中的研究进展综述(下)

2022年深度学习在时间序列预测和分类中的研究进展综述(下)

正文时间序列表示虽然Transformer 再预测方向上的效果并不好,但在创建有用的时间序列表示方面Transformer还是取得了许多进展。我认为这是时间序列深度学习领域中一个令人印象深刻的新领域,应该进行更深入的探索。5.TS2Vec: Towards Universal Representat...

2022年深度学习在时间序列预测和分类中的研究进展综述(上)

2022年深度学习在时间序列预测和分类中的研究进展综述(上)

前言来源:Deephub Imba时间序列预测的transformers的衰落和时间序列嵌入方法的兴起,还有异常检测、分类也取得了进步。2022年整个领域在几个不同的方面取得了进展,本文将尝试介绍一些在过去一年左右的时间里出现的更有前景和关键的论文,以及Flow Forecast [FF]预测框架。...

2022年深度学习在时间序列预测和分类中的研究进展综述

2022年深度学习在时间序列预测和分类中的研究进展综述

时间序列预测的transformers的衰落和时间序列嵌入方法的兴起,还有异常检测、分类也取得了进步2022年整个领域在几个不同的方面取得了进展,本文将尝试介绍一些在过去一年左右的时间里出现的更有前景和关键的论文,以及Flow Forecast [FF]预测框架。时间序列预测1、Are Transf...

使用LSTM深度学习模型进行温度的时间序列单步和多步预测(三)

使用LSTM深度学习模型进行温度的时间序列单步和多步预测(三)

结果可视化plt.figure(figsize=(12, 12)) plt.plot(pivoted.index, pivoted.temp_absolute_original, color=’blue’, label=’original’) plt.plot(pivoted.index, pivo...

使用LSTM深度学习模型进行温度的时间序列单步和多步预测(二)

使用LSTM深度学习模型进行温度的时间序列单步和多步预测(二)

timesteps-样本的长度。功能-使用的功能数量。建模之前的第一件事是将2D格式的数据转换为3D数组。以下功能可以做到这一点:例如,如果我们假设整个数据是数据的前10行,那么我们将过去3个小时用作特征,并希望预测出1步:def create_X_Y(ts: np.array, lag=1, n_...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

社区圈子

智能引擎技术
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
4027+人已加入
加入
相关电子书
更多
深度学习框架实战-Tensorflow
TensorRT Introduction
端上智能-深度学习模型压缩与加速
立即下载 立即下载 立即下载