
m基于FPGA的PID控制器实现,包含testbench测试程序,PID整定通过matlab使用RBF网络计算
1.算法仿真效果vivado2019.2、matlab2022a仿真结果如下: 2.算法涉及理论知识概要 PID控制器产生于1915年,PID控制律的概念最早是由LYAPIMOV提出的,到目前为止,PID控制器以及改进的PID控制器在工业控制领域里最为常见。PID控制器(比例-积分-微分控制器),由...

基于PSO粒子群算法优化RBF网络的数据预测matlab仿真
1.算法描述 1985年,Powell提出了多变量插值的径向基函数(RBF)方法。径向基函数是一个取值仅仅依赖于离原点距离的实值函数,也可以是到任意一点c的距离,c点称为中心点。任意满足上述特性的函数,都可以叫做径向基函数。一般使用欧氏距离计算距离中心点的距离(欧式径向基函数)。最常用的径向基函数是...

m分别使用ESN网络,ESN+RBF神经网络以及ESN+Volterra网络进行数据预测对比仿真
1.算法描述 ESN是Jaeger于2001年提出一种新型递归神经网络,ESN一经提出便成为学术界的热点,并被大量地应用到各种不同的领域中,包括动态模式分类、机器人控制、对象跟踪核运动目标检测、事件监测等,尤其是在时间序列预测问题上,取得了较为突出的贡献。Jaeger本人在提出这种神经网络的第二年便...

通俗易懂讲解RBF网络
1 RBF Network Hypothesis之前我们介绍过,在SVM中引入Gaussian Kernel就能在无限多维的特征转换中得到一条“粗壮”的分界线(或者高维分界平面、分界超平面)。从结果来看,Gaussian SVM其实就是将一些Gaussian函数进行线性组合,而Gaussian函数的...
RBF网络——核心思想:把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了
RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。 输入X是个m维的向量,样本容量为P,P>m。可以看到输入数据点Xp是...
更新时间 2023-05-28 04:05:43
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。