【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
欢迎来到本博客❤️❤️ 博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭:行百里者,半于九十。 1 概述 近年我国胸部疾病感染者的数量急剧增加。世界卫生组织报告显示,我国胸部类疾病患者数量在全球位列第一,并且还统计出国内肺癌的发病率、死亡率在所有的癌症中都是极高的。胸部疾病已经成为一个非常大的威胁。为了实现对病人胸部CT图片有...
深度学习方差代价函数误差评估
1 如何评估误差?深度学习常见的损失函数:https://blog.csdn.net/ZGL_cyy/article/details/1281735211、通过差值来评价误差 => 正负会抵消误差,使用绝对差 => 代码不好处理2、使用平方误差,平方误差越小就说明偏离的事实就越小,小蓝的思考就越接近真相于是我们将w和平方误差的关系画出来,发现图像是一个开口向上的一元二次方程均方误差:....
[深度学习入门]基于Python的理论与实现[感知机、神经网络、误差反向传播法及相关技巧](二)
第四章:神经网络的学习 通常要解决某个问题时,人们习惯以自己的经验和直觉来分析问题找出规律,然后反复试验推进。 “学习”是指从训练数据中自动获取最优权重参数的过程。 机器学习在前期收集问题的各项特征数据,用模型从数据中发现答案,争取避免人为介入。 深度学习在数据收集上(比如选/不选哪些特征的数据)较之机器学习更能避免人为介入。神经网络的学习目标是寻....
[深度学习入门]基于Python的理论与实现[感知机、神经网络、误差反向传播法及相关技巧](一)
一、前言 本文是本人在认真学习完[日]斋藤康毅所著《深度学习入门-基于Python的理论与实现》(因为封面上有条鱼,以下皆用《鱼书》代称之)后的学习心得与体会。至于为什么要把写成文字记录下来呢,一是为了我后续的学习方便快速地回忆之前的知识点,一是为了给同样在学习这本《鱼书》的朋友们提供一些帮助。二、概述 该书一共包含八个章节,暂且把它分成三大部分,分别涉及到: ...
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
1 概述近年我国胸部疾病感染者的数量急剧增加。世界卫生组织报告显示,我国胸部类疾病患者数量在全球位列第一,并且还统计出国内肺癌的发病率、死亡率在所有的癌症中都是极高的。胸部疾病已经成为一个非常大的威胁。为了实现对病人胸部CT图片有效分割,提高分割效率,本文提出一种基于最小误差的图像分割方法。该方法使用统计学的原理,对图像的直方图进行处理。一维最小误差阈值法假设了目标和背景的灰度分布服从混合正态分....
【从零开始学习深度学习】12. 什么是模型的训练误差?基于三阶多项式的欠拟合与过拟合训练过程演示
前言前几篇文章基于Fashion-MNIST数据集的实验中,我们评价了机器学习模型在训练数据集和测试数据集上的表现。如果你改变过实验中的模型结构或者超参数,你也许发现了:当模型在训练数据集上更准确时,它在测试数据集上却不一定更准确。这是为什么呢?1.1 训练误差和泛化误差通俗来讲,训练误差(training error)指模型在训练数据集上表现出的误差和泛化误差(generalization e....
深度学习入门(9)神经网络Affine与Softmax层的计算图表示方式及其误差反向传播的代码实现
1 Affine与Softmax层的实现1.1 Affine层神经元的加权和可以用Y = np.dot(X, W) + B计算出来。然后,Y 经过激活函数转换后,传递给下一层。这就是神经网络正向传播的流程。神经网络的正向传播中进行的矩阵的乘积运算在几何学领域被称为“仿射变换”。将进行仿射变换的处理实现为“Affine层”。Y = np.dot(X, W) + B,计算图如下:式中WT的T表示转置....
深度学习入门(8)激活函数ReLU和 Sigmoid的计算图表示方式及其误差反向传播的代码实现
前言基于前两篇文章《深度学习入门(6)误差反向传播基础---计算图与链式法则》《深度学习入门(7)误差反向传播计算方式及简单计算层的实现》计算图基础及其简单层的实现,本文主要介绍如何将计算图运用到神经网络中,通过定义一个类的方式用计算图实现激活函数的 ReLU层和 Sigmoid层,让其成为构成神经网络的一个基础层。一、ReLU层计算图及其代码实现如果正向传播时的输入x大于0,则反向传播会将上游....
深度学习入门(7)误差反向传播计算方式及简单计算层的实现
1 误差的反向传播1.1加法节点的反向传播1.2乘法节点的反向传播这里我们考虑z = xy。这个式子的导数用下式表示。乘法的反向传播会将上游的值乘以正向传播时的输入信号的“翻转值”后传递给下游。翻转值表示一种翻转关系,如图5-12所示,正向传播时信号是x的话,反向传播时则是y;正向传播时信号是y的话,反向传播时则是x。1.3 苹果的例子再来思考一下本章最开始举的购买苹果的例子( 2个苹果和消费税....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
+关注