OpenCV-图像着色(采用DNN模块导入深度学习模型)

OpenCV-图像着色(采用DNN模块导入深度学习模型)

实现原理       图像着色最早是应用在图像修复方面,将一些过去的黑白旧照根据预设色盘上色,得到色彩饱满的彩色图,比如0灰度对应某个RGB数值,120灰度对应某个RGB数值等等,这也是当前OpenCV中已集成好的applycolormap(伪彩色函数)实现原...

基于DNN深度学习网络的OFDM+QPSK信号检测算法matlab仿真

基于DNN深度学习网络的OFDM+QPSK信号检测算法matlab仿真

1.算法运行效果图预览 2.算法运行软件版本matlab2022a 3.算法理论概述 正交频分复用(OFDM)是一种多载波调制技术,已经广泛应用于数字通信领域。OFDM信号检测是接收端的关键问题之一,目的是将接收到的OFDM信号恢复为原始数据。由于OFDM信号具有高带宽效率、抗多径衰落等特点,可以在...

高校精品课-复旦大学-机器学习与深度学习

1 课时 |
105 人已学 |
免费

深度学习框架TensorFlow入门

24 课时 |
17302 人已学 |
免费

深度学习与自动驾驶

12 课时 |
3062 人已学 |
免费
开发者课程背景图
m基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输matlab仿真,输出误码率曲线,并用实际图片进行测试

m基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输matlab仿真,输出误码率曲线,并用实际图片进行测试

1.算法仿真效果matlab2022a仿真结果如下: 2.算法涉及理论知识概要 基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输"是一种无线通信系统,它利用正交频分复用(OFDM)和四相位偏移键控(QPSK)技术来传输图像数据,并借助深度神经网络(DNN)来进行信道估计,从而提高信号传输...

做时间序列预测有必要用深度学习吗?事实证明,梯度提升回归树媲美甚至超越多个DNN模型

做时间序列预测有必要用深度学习吗?事实证明,梯度提升回归树媲美甚至超越多个DNN模型

在深度学习方法应用广泛的今天,所有领域是不是非它不可呢?其实未必,在时间序列预测任务上,简单的机器学习方法能够媲美甚至超越很多 DNN 模型。过去几年,时间序列领域的经典参数方法(自回归)已经在很大程度上被复杂的深度学习框架(如 DeepGIO 或 LSTNet 等)更新...

基于DNN深度学习网络的OFDM信号检测算法的仿真,对比LS和MMSE

基于DNN深度学习网络的OFDM信号检测算法的仿真,对比LS和MMSE

1.算法描述 随着无线通信的快速发展,5G正逐渐成长为支撑全社会各行业运作的大型基础性互联网络,其服务范围的大幅扩展对底层技术提出了诸多挑战,尤其是作为物理层关键技术之一的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)。近来,深度学习因...

使用numpy手写深度学习DNN网络

使用numpy手写深度学习DNN网络

使用方法定义网络from net import ConvNet net = ConvNet() if not net.load(MODEL_PATH): net.addConvLayout([3,3,1,4],bias = True,padding='VAILD',init_type=init_ty...

基于DNN深度学习网络的OFDM信号检测算法的matlab仿真,对比LS和MMSE两个算法

基于DNN深度学习网络的OFDM信号检测算法的matlab仿真,对比LS和MMSE两个算法

1.算法描述 在OFDM系统中,信道估计器的设计上要有两个问题:** 一是导频信息的选择,由于无线信道的时变特性,需要接收机不断对信道进行跟踪,因此导频信息也必须不断的传送: 二是既有较低的复杂度又有良好的导频跟踪能力的信道估计器的设计,在确定导频发送方式和信道估计准则条件下,寻找最佳的信道估计器结...

周志华揭牌英特尔-南大联合研究中心:探索DNN与GPU之外的「广义深度学习」

周志华揭牌英特尔-南大联合研究中心:探索DNN与GPU之外的「广义深度学习」

「我想通过和英特尔的合作,不仅会进一步推动我们在人工智能、机器学习算法方面的研究,同时也会进一步扩大这些研究对芯片硬件架构方面进一步发展的影响」,周志华表示,「此外,因为英特尔已经给各行各业的用户提供了技术支持和服务,通过这次合作,也有可能进一步把我们的研究成果进一步推向产业化应用,提...

DL:深度学习模型概览(包括DNN、CNN、RNN等)的简介、网络结构简介、使用场景对比之详细攻略

DL:深度学习模型概览(包括DNN、CNN、RNN等)的简介、网络结构简介、使用场景对比之详细攻略

神经网络所有模型的简介及其总结       FF【前馈神经网络】和 RNN【循环神经网络】是相对的概念。backpropagation是一类训练方法。神经网络所有模型的简介(概览)DL:深度学习算法(神经网络模型集合)概览之《THE NEURAL NETWORK ZOO...

深度学习要多深,才能了解你的心?——DNN在搜索场景中的应用

DNN在搜索场景中的应用潜力,也许会比你想象的更大。 1.背 景 搜索排序的特征在于大量的使用了LR,GBDT,SVM等模型及其变种。我们主要在特征工程,建模的场景,目标采样等方面做了很细致的工作。但这些模型的瓶颈也非常的明显,尽管现在阿里集团内部的PS版本LR可以支持到50亿特征规模,400亿的样...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

社区圈子

智能引擎技术
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
4026+人已加入
加入
相关电子书
更多
深度学习框架实战-Tensorflow
TensorRT Introduction
端上智能-深度学习模型压缩与加速
立即下载 立即下载 立即下载