文章 2023-08-17 来自:开发者社区

经典神经网络论文超详细解读(五)——ResNet(残差网络)学习笔记(翻译+精读+代码复现)

前言《Deep Residual Learning for Image Recognition》这篇论文是何恺明等大佬写的,在深度学习领域相当经典,在2016CVPR获得best paper。今天就让我们一起来学习一下吧!论文原文:https://arxiv.org/abs/1512.03385前情回顾:经典神经网络论文超详细解读(一)——AlexNet学习笔记(翻译+精读)经典神经网络论文超详....

经典神经网络论文超详细解读(五)——ResNet(残差网络)学习笔记(翻译+精读+代码复现)
文章 2023-05-17 来自:开发者社区

零障碍合并两个模型,大型ResNet模型线性连接只需几秒,神经网络启发性新研究

这篇论文探讨了置换对称性(permutation symmetry)如何在 SGD 解决方案的线性模式连接中发挥重要作用。深度学习能够取得如此成就,得益于其能够相对轻松地解决大规模非凸优化问题。尽管非凸优化是 NP 困难的,但一些简单的算法,通常是随机梯度下降(SGD)的变体,它们在实际拟合大型神经网络时表现出惊人的有效性。本文中,来自华盛顿大学的多位学者撰文《 Git Re-Basin: Me....

零障碍合并两个模型,大型ResNet模型线性连接只需几秒,神经网络启发性新研究
文章 2023-05-11 来自:开发者社区

【Pytorch神经网络理论篇】 31 图片分类模型:ResNet模型+DenseNet模型+EffcientNet模型

同学你好!本文章于2021年末编写,获得广泛的好评!故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现,Pytorch深度学习·理论篇(2023版)目录地址为:CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通....

【Pytorch神经网络理论篇】 31 图片分类模型:ResNet模型+DenseNet模型+EffcientNet模型
文章 2023-01-05 来自:开发者社区

经典神经网络 | ResNet 论文解析及代码实现

论文题目:Deep Residual Learning for Image Recognition论文地址:https://arxiv.org/pdf/1512.03385.pdf前言ResNet是2015年ImageNet比赛的冠军,将识别错误率降低到了3.6%,这个结果甚至超出了正常人眼识别的精度。通过观察学习vggnet等经典神经网络模型,我们可以发现随着深度学习的不断发展,模型的层数越来....

经典神经网络 | ResNet 论文解析及代码实现
文章 2022-11-30 来自:开发者社区

手撕Resnet卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。

Resnet(Deep residual network, ResNet),深度残差神经网络,卷积神经网络历史在具有划时代意义的神经网络。与Alexnet和VGG不同的是,网络结构上就有很大的改变,在大家为了提升卷积神经网络的性能在不断提升网络深度的时候,大家发现随着网络深度的提升,网络的效果变得越来越差,甚至出现了网络的退化问题,80层的网络比30层的效果还差,深度网络存在的梯度消失和爆炸问题....

手撕Resnet卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。
文章 2022-04-27 来自:开发者社区

【Pytorch(七)】基于 PyTorch 实现残差神经网络 ResNet

0. 概述在本节实验中,我们将基于 PyTorch 实现残差神经网络 ResNet,并在一个难度稍大的图片数据集(CIFAR-10)上进行训练和测试。具体包括如下几个部分:(1) 熟悉新数据集 CIFAR-10,并和 MNIST 对比分类难度;(2) 学习残差神经网络,特别是 Block 的概念;(3) 构建残差神经网络,并基于此实现 CIFAR-10 的训练与测试。Ref: https://a....

【Pytorch(七)】基于 PyTorch 实现残差神经网络 ResNet
文章 2022-02-17 来自:开发者社区

【pytorch】改造resnet为全卷积神经网络以适应不同大小的输入

【pytorch】改造resnet为全卷积神经网络以适应不同大小的输入为什么resnet的输入是一定的? 因为resnet最后有一个全连接层。正是因为这个全连接层导致了输入的图像的大小必须是固定的。 输入为固定的大小有什么局限性? 原始的resnet在imagenet数据集上都会将图像缩放成224×224的大小,但这么做会有一些局限性: (1)当目标对象占据图像中的位置很小时,对图像进行缩放将导....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。