【Python机器学习】实验08 K-means无监督聚类 2

【Python机器学习】实验08 K-means无监督聚类 2

8 使用“肘部法则”选取k值def selecte_K(X,iter_num): dist_arry=[] for k in range(1,10): centroids,idx=k_means(data.values,k,iter_num) dist_arry.append((k,metric_s...

【Python机器学习】实验08 K-means无监督聚类 1

【Python机器学习】实验08 K-means无监督聚类 1

聚类在本练习中,我们将实现K-means聚类K-means 聚类我们将实施和应用K-means到一个简单的二维数据集,以获得一些直观的工作原理。 K-means是一个迭代的,无监督的聚类算法,将类似的实例组合成簇。 该算法通过猜测每个簇的初始聚类中心开始,然后重复将实例分配给最近的簇,并重新计算该簇...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

社区圈子

Python学习站
Python学习站
Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。
682+人已加入
加入

Python更多机器学习相关