机器学习面试笔试之特征工程、优化方法、降维、模型评估2
三、降维方法常见的降维方法有主成分分析、线性判别分析、等距映射、局部线性嵌入、拉普拉斯特征映射、局部保留投影、MDS多维缩放、流行学习。1.线性判别分析(LDA)线性判别分析(Linear Discriminant Analysis,LDA)是一种经典的降维方法。和主成分分析PCA不考虑样本类别输出的无监督降维技术不同,LDA是一种监督学习的降维技术,数据集的每个样本有类别输出。LDA分类思想简....

机器学习面试笔试之特征工程、优化方法、降维、模型评估1
一、特征工程有哪些?特征工程,顾名思义,是对原始数据进行一系列工程处理,将其提炼为特征,作为输入供算法和模型使用。从本质上来讲,特征工程是一个表示和展现数据的过程。在实际工作中,特征工程旨在去除原始数据中的杂质和冗余,设计更高效的特征以刻画求解的问题与预测模型之间的关系。主要讨论以下两种常用的数据类型。结构化数据。结构化数据类型可以看作关系型数据库的一张表,每列都有清晰的定义,包含了数值型、类别....

机器学习面试笔试知识点-贝叶斯网络(Bayesian Network) 、马尔科夫(Markov) 和主题模型(T M)1
一、贝叶斯网络(Bayesian Network)1.对概率图模型的理解概率图模型是用图来表示变量概率依赖关系的理论,结合概率论与图论的知识,利用图来表示与模型有关的变量的联合概率分布。对于一个实际问题,我们希望能够挖掘隐含在数据中的知识。概率图模型构建了这样一幅图,用观测结点表示观测到的数据,用隐含结点表示潜在的知识,用边来描述知识与数据的相互关系,最后基于这样的关系图获得一个概率分布,非常“....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
Java面试那些事儿
手把手带您学习Java,开启编程之路。
+关注