[再寄小读者之数学篇](2014-06-23 二阶导数估计 [中国科学技术大学2013年高等数学B 考研试题])
设 $f(x)$ 二阶连续可导, $f(0)=f(1)=0$, $\dps{\max_{0\leq x\leq 1}f(x)=2}$. 证明: $$\bex \min_{0\leq x\leq 1}f''(x)\leq -16. \eex$$ 证明: 设 $$\bex \xi\in (0,1),\st f(\xi)=\max_{0\leq x\leq 1}f(x)=2\ra f'(\...
[再寄小读者之数学篇](2014-06-23 积分不等式 [中国科学技术大学2013年高等数学B 考研试题])
设 $f(x)$ 在 $[a,b]$ 上一阶连续可导, $f(a)=0$. 证明: $$\bex \int_a^b f^2(x)\rd x\leq \cfrac{(b-a)^2}{2}\int_a^b [f'(x)]^2\rd x -\cfrac{1}{2}\int_a^b [f'(x)]^2 (x-a)^2\rd x. \eex$$ 证明: $$\beex \bea \int_a^...
[再寄小读者之数学篇](2014-06-22 发散级数 [中国科学技术大学2012年高等数学B考研试题])
设 $a_n>0$, $S_n=a_1+a_2+\cdots+a_n$, 级数 $\dps{\vsm{n}a_n}$ 发散, 证明: $\dps{\vsm{n}\cfrac{a_n}{S_n}}$ 发散. 证明: 对任意固定的 $n$, 由 $S_{n+p}\to \infty\ (p\to\infty)$ 知 $$\bex \exists\ p,\st \cfrac{S_n}...
[再寄小读者之数学篇](2014-06-22 求极限 [中国科学技术大学2011年高等数学B考研试题])
设数列 $\sed{x_n}$ 满足 $0<x_1<\pi$, $x_{n+1}=\sin x_n\ (n=1,2,\cdots)$. (1) 证明 $\dps{\vlm{n}x_n}$ 存在, 并求其极限; (2) 计算 $\dps{\vlm{n}\sex{\cfrac{x_{n+1}}{x_n}}^{\frac{1}{x_n^2}}}$; (3) 证明 $\dps{\vlm{n}....
[再寄小读者之数学篇](2014-06-22 不等式 [中国科学技术大学2011年高等数学B考研试题])
证明不等式: $$\bex 1+x\ln\sex{x+\sqrt{1+x^2}}>\sqrt{1+x^2},\quad x>0. \eex$$ 证明: 令 $x=\tan t,\ 0<t<\cfrac{\pi}{2}$, 而只要证明 $$\bex 1+\tan t\ln\sex{\sec t+\tan t}>\sec t. \eex$$ 令 $$\bex...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。