Azure - 机器学习:使用自动化机器学习训练计算机视觉模型的数据架构

Azure - 机器学习:使用自动化机器学习训练计算机视觉模型的数据架构

了解如何设置Azure中 JSONL 文件格式,以便在训练和推理期间在计算机视觉任务的自动化 ML 实验中使用数据。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人...

【网安AIGC专题10.11】2 ILF利用人类编写的 自然语言反馈 来训练代码生成模型:自动化反馈生成+多步反馈合并+处理多错误反馈+CODEGEN -M ONO 6.1 B model

【网安AIGC专题10.11】2 ILF利用人类编写的 自然语言反馈 来训练代码生成模型:自动化反馈生成+多步反馈合并+处理多错误反馈+CODEGEN -M ONO 6.1 B model

写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。一位同学分享了arXiv 2023.3.28纽约大学团队Authors: Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos, Jun S...

MSE微服务测试最佳实践 - 自动化回归

1 课时 |
120 人已学 |
免费
开发者课程背景图
微软提出自动化神经网络训练剪枝框架OTO,一站式获得高性能轻量化模型

微软提出自动化神经网络训练剪枝框架OTO,一站式获得高性能轻量化模型

作者: 陈天翼-微软西雅图-高级研究员OTO 是业内首个自动化、一站式、用户友好且通用的神经网络训练与结构压缩框架。在人工智能时代,如何部署和维护神经网络是产品化的关键问题考虑到节省运算成本,同时尽可能小地损失模型性能,压缩神经网络成为了 DNN 产品化的关键之一。DNN 压缩通常来说有三...

阿里巴巴提出USI 让AI炼丹自动化了,训练任何Backbone无需超参配置,实现大一统!

阿里巴巴提出USI 让AI炼丹自动化了,训练任何Backbone无需超参配置,实现大一统!

1主要贡献为ImageNet数据集引入了一个统一的、高效的训练方案,USI,它不需要超参数调整。完全相同的配置也适用于任何Backbone。因此,ImageNet训练从一个面向专业炼丹师的任务转变为一个自动化的过程。在各种深度学习模型上测试了USI,包括类似于ResNet、MobileNet、基于T...

中科院自动化所拿下星际争霸AI竞赛第四名,顺便发布了一个训练AI“大局观”的数据集

上周日,互动数字娱乐AI大会(AIIDE)2017中的星际争霸AI竞赛落下帷幕。这一竞赛是即时战略(RTS)游戏AI比赛中最重要的比赛之一,暴雪、DeepMind和Facebook人工智能研究院等机构也有赞助。两周的车轮战中共进行了41580场1v1比赛,28个参赛AI中每两个之间也平均比赛了110...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

社区圈子

开发与运维
开发与运维
集结各类场景实战经验,助你开发运维畅行无忧
6364+人已加入
加入
相关电子书
更多
通过 ACK 智能化运维体系获得集群自动化诊断和自愈能力
《一站式网络自动化管理平台》
钉钉客户端自动化的应用
立即下载 立即下载 立即下载