【Python机器学习】Sklearn库中Kmeans类、超参数K值确定、特征归一化的讲解(图文解释)

【Python机器学习】Sklearn库中Kmeans类、超参数K值确定、特征归一化的讲解(图文解释)

一、局部最优解采用随机产生初始簇中心 的方法,可能会出现运行 结果不一致的情况。这是 因为不同的初始簇中心使 得算法可能收敛到不同的 局部极小值。不能收敛到全局最小值,是最优化计算中常常遇到的问题。有一类称为凸优化的优化计算,不存在局部最优问题。凸优化是指损失函数为凸函数的最优化计算。在凸函数中,没...

详解机器学习中的数据处理(二)——特征归一化

详解机器学习中的数据处理(二)——特征归一化

1.特征归一化  特征工程,顾名思义,是对原始数据进行一系列工程处理,将其提炼为特征,作为输入供算法和模型使用。从本质上来讲,特征工程是一个表示和展现数据的过程。在实际工作中,特征工程旨在去除原始数据中的杂质和冗余,设计更高效的特征以刻画求解的问题与预测模型之间的关系。 ...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

相关电子书
更多
大规模机器学习在蚂蚁+阿里的应用
基于Spark的面向十亿级别特征的 大规模机器学习
基于Spark的大规模机器学习在微博的应用
立即下载 立即下载 立即下载