文章 2024-01-29 来自:开发者社区

机器学习 - [源码实现决策树小专题]决策树中子数据集的划分(不允许调用sklearn等库的源代码实现)

决策树算法中子数据集的划分推荐: 本文中的代码另外有采用了TypeScript/JavaScript进行实现的版本。作者关注到,谷歌TensorFlow团队近几年在JavaScript语言上动作频频,自推出同接口的JavaSccript版本TensorFlow.js后,在2020年先后右推出与Pandas同接口的JavaScript版本库"Danfo.js",同时配套推出了一个类似于Jupyte....

机器学习 - [源码实现决策树小专题]决策树中子数据集的划分(不允许调用sklearn等库的源代码实现)
文章 2023-12-20 来自:开发者社区

【Python机器学习】决策树、逻辑回归、神经网络等模型对电信用户流失分类实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~电信用户流失分类该实例数据来自kaggle,它的每一条数据为一个用户的信息,共有21个有效字段,其中最后一个字段Churn标志该用户是否流失1:数据初步分析 可用pandas的read_csv()函数来读取数据,用DataFrame的head()、shape、info()、duplicated()、nunique()等来初步观察数据。....

【Python机器学习】决策树、逻辑回归、神经网络等模型对电信用户流失分类实战(附源码和数据集)
文章 2023-12-20 来自:开发者社区

【Python机器学习】决策树、K近邻、神经网络等模型对Kaggle房价预测实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~超参数调优超参数调优需要依靠试验的方法,以及人的经验。对算法本身的理解越深入,对实现算法的过程了解越详细,积累了越多的调优经验,就越能够快速准确地找到最合适的超参数试验的方法,就是设置了一系列超参数之后,用训练集来训练并用验证集来检验,多次重复以上过程,取效果最好的超参数。训练数据的划分可以采用保持法,也可以采用K-折交叉验证法。超参数调优的试....

【Python机器学习】决策树、K近邻、神经网络等模型对Kaggle房价预测实战(附源码和数据集)
文章 2023-12-20 来自:开发者社区

【Python机器学习】使用决策树模型预测消费者未来消费行为实战(附源码和数据集 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~一个预测未来消费行为的示例,即已经采集了过去消费行为的信息,并用来建立一个模型以对未来的消费行为进行预测。该示例简要演示了数据预处理、提取特征、选择模型、训练模型、评估模型、应用等阶段,供读者初步了解机器学习的应用流程。过去的消费行为信息包括消费者进店的年月日,性别(1男 0女)和是否消费(1消费 0没消费)共五项 部分数据如下 1:切分训练集....

【Python机器学习】使用决策树模型预测消费者未来消费行为实战(附源码和数据集 超详细)
文章 2023-05-16 来自:开发者社区

机器学习 -决策树算法中子数据集的划分

决策树算法中子数据集的划分Note: 本文中的代码另外有采用了TypeScript/JavaScript进行实现的版本。作者关注到,谷歌TensorFlow团队近几年在JavaScript语言上动作频频,自推出同接口的JavaSccript版本TensorFlow.js后,在2020年先后右推出与Pandas同接口的JavaScript版本库"Danfo.js",同时配套推出了一个类似于Jupy....

机器学习 -决策树算法中子数据集的划分
文章 2022-07-23 来自:开发者社区

ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)

目录利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集【13+1,506】回归预测(模型评估、推理并导到csv)输出数据集1、LiR 线性回归算法2、kNNR k最近邻算法3、SVMR 支持向量机算法4、DTR 决策树算法5、RFR 随机森林算法6、ExtraTR 极端随机树算法7、SGDR 随机梯度上升....

ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)
文章 2022-07-23 来自:开发者社区

ML之分类预测:以六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类模型评估案例来理解和认知机器学习分类预测的模板流程

目录六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类预测数据集理解1、kNN2、逻辑回归3、SVM4、决策树5、随机森林6、提升树7、神经网络 相关文章ML之分类预测:以六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类模型评估案例来理解和认知机器学习分类预....

ML之分类预测:以六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类模型评估案例来理解和认知机器学习分类预测的模板流程
文章 2022-05-17 来自:开发者社区

【人工智能】机器学习之使用Python生成ID3决策树及使用sklearn的决策树算法对葡萄酒数据集进行分类

❤❤❤ID3算法✅✅决策树的思想:给定一个集合,其中的每个样本由若干属性表示,决策树通过贪心的策略不断挑选最优的属性。常见的决策树算法有ID3,C4.5,CART算法等。ID3算法: baseEntropy = self.calcShannonEnt(dataset) # 基础熵 num = len(dataset) # 样本总数 ...

【人工智能】机器学习之使用Python生成ID3决策树及使用sklearn的决策树算法对葡萄酒数据集进行分类
文章 2014-04-24 来自:开发者社区

【机器学习算法-python实现】决策树-Decision tree(1) 信息熵划分数据集

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景           决策书算法是一种逼近离散数值的分类算法,思路比较简单,而且准确率较高。国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Data Mining)在2006年12...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。