深度学习基础入门篇[四]:激活函数介绍:tanh、sigmoid、ReLU、PReLU、ELU、softplus、softmax、swish等
深度学习基础入门篇[四]:激活函数介绍:tanh、sigmoid、ReLU、PReLU、ELU、softplus、softmax、swish等1.激活函数激活函数是人工神经网络的一个极其重要的特征;激活函数决定一个神经元是否应该被激活,激活代表神经元接收的信息与给定的信息有关;激活函数对输入信息进行非线性变换,然后将变换后的输出信息作为输入信息传给下一层神经元。激活函数的作用如果不用激活函数,每....
![深度学习基础入门篇[四]:激活函数介绍:tanh、sigmoid、ReLU、PReLU、ELU、softplus、softmax、swish等](https://ucc.alicdn.com/fnj5anauszhew/developer-article1191321/20241026/3dd4b7bdb9bb4af5926d6c4dcd29a630.jpeg)
深度学习入门(9)神经网络Affine与Softmax层的计算图表示方式及其误差反向传播的代码实现
1 Affine与Softmax层的实现1.1 Affine层神经元的加权和可以用Y = np.dot(X, W) + B计算出来。然后,Y 经过激活函数转换后,传递给下一层。这就是神经网络正向传播的流程。神经网络的正向传播中进行的矩阵的乘积运算在几何学领域被称为“仿射变换”。将进行仿射变换的处理实现为“Affine层”。Y = np.dot(X, W) + B,计算图如下:式中WT的T表示转置....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
深度学习入门相关内容
- 深度学习入门构建网络
- 深度学习神经网络入门
- 入门深度学习
- 深度学习入门概述
- 深度学习入门实践
- 深度学习入门案例
- 深度学习入门图像
- 深度学习入门卷积
- 深度学习入门cnn
- 深度学习入门分类
- 深度学习入门反向传播
- 深度学习卷积入门
- 深度学习入门场景
- keras深度学习入门
- 深度学习入门感知机
- 深度学习入门keras
- 深度学习入门概念
- 入门人工智能深度学习
- 深度学习入门numpy
- 深度学习入门学习
- 深度学习入门集合
- 深度学习入门序列
- 深度学习入门pytorch
- 深度学习入门笔记
- 深度学习入门数字识别
- 深度学习入门笔记手写数字识别
- 深度学习入门实例
- 深度学习入门rnn
- 深度学习入门计算
- 深度学习入门卷积计算
深度学习更多入门相关
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
+关注