文章 2024-06-14 来自:开发者社区

基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型

1.算法运行效果图预览 2.算法运行软件版本matlab2022a 3.部分核心程序```t1 = clock; %计时开始net = fitnet(54);net.trainParam.epochs = 1000; %设置训练次数net.trainParam.goal = 0.00001; %设置性能函数net.trainParam.show = 1; %每10显示net.trainP...

基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
文章 2024-02-07 来自:开发者社区

YOLOv5改进 | 主干篇 | 12月最新成果UniRepLknet特征提取网络(附对比试验效果图)

一、本文介绍 本文给大家带来的改进机制是特征提取网络UniRepLknet,其也是发表于今年12月份的最新特征提取网络,该网络结构的重点在于使用Dilated Reparam Block和大核心指导原则,强调了高效的结构进行通道间通讯和空间聚合,以及使用带扩张的小核心进行重新参数化,该网络结构就是在LKNet基础上的一个升级版本,LKNet我们之前已经出过教程了。UniRepLknet在...

YOLOv5改进 | 主干篇 | 12月最新成果UniRepLknet特征提取网络(附对比试验效果图)

企业级云上网络构建

10 课时 |
940 人已学 |
免费

专有云网络基础架构介绍

1 课时 |
814 人已学 |
免费

TCP/IP 网络基础

4 课时 |
1116 人已学 |
免费
开发者课程背景图
文章 2024-02-07 来自:开发者社区

YOLOv5改进 | 主干篇 | 12月份最新成果TransNeXt特征提取网络(全网首发)

一、本文介绍 本文给大家带来的改进机制是TransNeXt特征提取网络,其发表于2023年的12月份是一个最新最前沿的网络模型,将其应用在我们的特征提取网络来提取特征,同时本文给大家解决其自带的一个报错,通过结合聚合的像素聚焦注意力和卷积GLU,模拟生物视觉系统,特别是对于中心凹的视觉感知。这种方法使得每个像素都能实现全局感知,并强化了模型的信息混合和自然视觉感知能力。TransNeXt...

YOLOv5改进 | 主干篇 | 12月份最新成果TransNeXt特征提取网络(全网首发)
文章 2024-02-07 来自:开发者社区

YOLOv8改进 | 主干篇 | EfficientViT高效的特征提取网络完爆MobileNet系列(轻量化网络结构)

一、本文介绍 本文给大家带来的改进机制是主干网络,一个名字EfficientViT的特征提取网络(和之前发布的只是同名但不是同一个),其基本原理是提升视觉变换器在高效处理高分辨率视觉任务的能力。它采用了创新的建筑模块设计,包括三明治布局和级联群组注意力模块。其是一种高效率的特征提取网络训练速度非常快,推理速度也要比基础版本的要快,其效果完爆之前的MobileNetV3等轻量化网络模型。欢...

YOLOv8改进 | 主干篇 | EfficientViT高效的特征提取网络完爆MobileNet系列(轻量化网络结构)
文章 2024-02-07 来自:开发者社区

YOLOv8改进 | 主干篇 | 12月最新成果UniRepLknet特征提取网络(附对比试验效果图)

一、本文介绍 本文给大家带来的改进机制是特征提取网络UniRepLknet,其也是发表于今年12月份的最新特征提取网络,该网络结构的重点在于使用Dilated Reparam Block和大核心指导原则,强调了高效的结构进行通道间通讯和空间聚合,以及使用带扩张的小核心进行重新参数化,该网络结构就是在LKNet基础上的一个升级版本,LKNet我们之前已经出过教程了。UniRepLknet在...

YOLOv8改进 | 主干篇 | 12月最新成果UniRepLknet特征提取网络(附对比试验效果图)
文章 2024-02-07 来自:开发者社区

YOLOv5改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv5(超级轻量化精度更高)

一、本文介绍 本文给大家带来利用RT-DETR模型主干HGNet去替换YOLOv5的主干,RT-DETR是今年由百度推出的第一款实时的ViT模型,其在实时检测的领域上号称是打败了YOLO系列,其利用两个主干一个是HGNet一个是ResNet,其中HGNet就是我们今天来讲解的网络结构模型(亲测这个HGNet网络比YOLO的主干更加轻量化和精度更高的主干,非常适合轻量化研究的读者),这个网...

YOLOv5改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv5(超级轻量化精度更高)
文章 2024-02-07 来自:开发者社区

YOLOv5改进 | 主干篇 | EfficientNetV1高效的特征提取网络

一、本文介绍 这次给大家带来的改进机制是EfficientNetV1主干,用其替换我们YOLOv8的特征提取网络,其主要思想是通过均衡地缩放网络的深度、宽度和分辨率,以提高卷积神经网络的性能。这种方法采用了一个简单但有效的复合系数,统一调整所有维度。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,同时该主干网络提供多种版本,大家可以在源代码中进行修改版本的使用。本文通过介绍其主...

YOLOv5改进 | 主干篇 | EfficientNetV1高效的特征提取网络
文章 2024-02-07 来自:开发者社区

YOLOv5改进 | 主干篇 | EfficientNetV2均衡缩放网络改进特征提取层

一、本文介绍 这次给大家带来的改进机制是EfficientNetV2,其在其V1版本通过均衡地缩放网络的深度、宽度和分辨率,以提高卷积神经网络的性能的基础上,又提出了一种改进的渐进式学习方法,通过在训练过程中逐步增加图像尺寸并适应性调整正则化来加快训练速度,同时保持准确性。所以其相对于V1版本的改进主要是在速度和效率上的改进(但是经过我实验我觉得V2不如V1快,可能是我使用的不是同一等级...

YOLOv5改进 | 主干篇 | EfficientNetV2均衡缩放网络改进特征提取层
文章 2024-02-07 来自:开发者社区

YOLOv8改进 | 主干篇 | 12月份最新成果TransNeXt特征提取网络(全网首发)

一、本文介绍 本文给大家带来的改进机制是TransNeXt特征提取网络,其发表于2023年的12月份是一个最新最前沿的网络模型,将其应用在我们的特征提取网络来提取特征,同时本文给大家解决其自带的一个报错,通过结合聚合的像素聚焦注意力和卷积GLU,模拟生物视觉系统,特别是对于中心凹的视觉感知。这种方法使得每个像素都能实现全局感知,并强化了模型的信息混合和自然视觉感知能力。TransNeXt...

YOLOv8改进 | 主干篇 | 12月份最新成果TransNeXt特征提取网络(全网首发)
文章 2024-02-07 来自:开发者社区

YOLOv8改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv8(超级轻量化精度更高)

一、本文介绍本文给大家带来利用RT-DETR模型主干HGNet去替换YOLOv8的主干,RT-DETR是今年由百度推出的第一款实时的ViT模型,其在实时检测的领域上号称是打败了YOLO系列,其利用两个主干一个是HGNet一个是ResNet,其中HGNet就是我们今天来讲解的网络结构模型(亲测这个HGNet网络比YOLO的主干更...

YOLOv8改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv8(超级轻量化精度更高)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

域名解析DNS

关注DNS技术、标准、产品和行业趋势,连接国内外相关技术社群信息,加强信息共享。

+关注