【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.4)
1.4 正则化正则化用来解决神经网络过度拟合数据(即高方差)的问题,正则化的作用原理:1.在逻辑回归中的正则化用逻辑回归来实现,求成本函数的最小值,成本函数中的参数包括一些训练数据和不同数据中个体预测的损失,w和b是逻辑回归的两个参数,其中w是一个多维度的参数矢量,b是一个实数,在逻辑回归中添加正则化就是加入一个参数入(正则化参数),w欧几里得范数的平方等于wj(j从1到nx)平方的和,此方法称....
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.3)
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.3)1.3机器学习基础训练神经网络的基本方法:初识模型训练完成后,要看下算法的偏差高不高,如果较高,就试着评估训练集或训练数据的性能,如果的确很高,甚至无法拟合训练集,那就选择一个新的网络(含有更多隐藏层或隐藏单元的神经网络),或者花费更多的时间来训练网络,训练算法,尝试更先进的优化算法。采用新的网络架构,采用更大规模的神....
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.2)
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.2)1.2 偏差/方差假设图中的ooxx代表数据集,现用一条直线去拟合左图的数据,可能会得到一个逻辑回归拟合,但是可以看到这条直线并不能很好的拟合数据,这种就属于高偏差情况,通常称为欠拟合。而对于一个非常复杂的分类器,比如深度神经网络或者含有隐藏单元的神经网络,就适用于右边的数据集,但也不是一个合适的拟合方式,这种属于分类....
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.1)
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.1)1.1训练/开发/测试集如果想要构建一个高效的神经网络,那么配置训练、验证、测试集就要好好斟酌了。在创建神经网络时,要做一些决策,包括网络有几层,每层有几个隐藏单元,学习率,各层用到的激活函数等。但在实际应用中,我们不可能一开始就能够准确的预测出这些超参数的值,因而,可以说,应用型机器学习是一个高度迭代的过程。如果想要....
吴恩达《神经网络与深度学习》精炼笔记(5)-- 深层神经网络
上节课我们主要介绍了浅层神经网络。首先介绍神经网络的基本结构,包括输入层,隐藏层和输出层。然后以简单的2 layer NN为例,详细推导了其正向传播过程和反向传播过程,使用梯度下降的方法优化神经网络参数。同时,我们还介绍了不同的激活函数,比较各自优缺点,讨论了激活函数必须是非线性的原因。最后介绍了神经网络参数随机初始化的必要性,特别是权重W,不同神经元的W不能初始化为同一零值。本节课是对上节课的....
吴恩达《深度学习》第一门课(4)深层神经网络
4.1深层神经网络 (1)到底是深层还是浅层是一个相对的概念,不必太纠结,以下是一个四层的深度神经网络: (2)一些符号定义: a[0]=x(输入层也叫做第0层) L=4:表示网络的层数 g:表示激活函数 第l层输出用a[l],最终的输出用a[L]表示 n[1]=5:表示第一层有五个神经元,第l层神经元个数用n[l]表示 4.2前向传播和反向传播 (1)前向传播:输入a[l-1],输出是a[l.....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
智能搜索推荐
智能推荐(Artificial Intelligence Recommendation,简称AIRec)基于阿里巴巴大数据和人工智能技术,以及在电商、内容、直播、社交等领域的业务沉淀,为企业开发者提供场景化推荐服务、全链路推荐系统开发平台、工程引擎组件库等多种形式服务,助力在线业务增长。
+关注