阿里云文档 2025-01-16

如何在七代安全增强型实例中部署PyTorch深度学习模型

本文介绍如何基于安全增强型实例(Intel® SGX)部署PyTorch深度学习模型的技术架构和使用流程。

文章 2023-08-04 来自:开发者社区

[深度学习实战]基于PyTorch的深度学习实战(中)[线性回归、numpy矩阵的保存、模型的保存和导入、卷积层、池化层](二)

5.2 Conv1d   conv1d 是一维卷积,它和 conv2d 的区别在于只对宽度进行卷积,对高度不卷积。5.2.1 函数定义torch.nn.functional.conv1d(input, weight, bias=None, stride=1, padding=0, dilation=5.2.2 参数说明  input:输入的Tensor数据,格式为 (batc....

[深度学习实战]基于PyTorch的深度学习实战(中)[线性回归、numpy矩阵的保存、模型的保存和导入、卷积层、池化层](二)
文章 2023-08-04 来自:开发者社区

[深度学习实战]基于PyTorch的深度学习实战(中)[线性回归、numpy矩阵的保存、模型的保存和导入、卷积层、池化层](一)

一、前言  本想着一篇博文直接写完基于PyTorch的深度学习实战,可写着写着发现字数都上万了。考虑到读者可能花了大力气对这么一篇博文看到失去了对PyTorch神经网络的耐心,同时也为了我个人对文章排版的整理,还是分成了分卷阅读。  这里贴一下上篇博文:[深度学习实战]基于PyTorch的深度学习实战(上)[变量、求导、损失函数、优化器]二、线性回归  线性回归也叫....

[深度学习实战]基于PyTorch的深度学习实战(中)[线性回归、numpy矩阵的保存、模型的保存和导入、卷积层、池化层](一)
文章 2022-12-08 来自:开发者社区

【从零开始学习深度学习】4.基于pytorch框架自带模型实现线性回归的训练过程

1.1 生成数据集我们生成与上一篇文章中相同的数据集。其中features是训练数据特征,labels是标签。样本形状为1000*2。num_inputs = 2 num_examples = 1000 true_w = [2, -3.4] true_b = 4.2 features = torch.tensor(np.random.normal(0, 1, (num_examples, num....

文章 2022-12-08 来自:开发者社区

【从零开始学习深度学习】3. 基于pytorch手动实现一个线性回归模型并进行min--batch训练

1.1 线性回归简介线性回归输出是一个连续值,因此适用于回归问题。回归问题在实际中很常见,如预测房屋价格、气温、销售额等连续值的问题。与回归问题不同,分类问题中模型的最终输出是一个离散值。我们所说的图像分类、垃圾邮件识别、疾病检测等输出为离散值的问题都属于分类问题的范畴。softmax回归则适用于分类问题。由于线性回归和softmax回归都是单层神经网络,它们涉及的概念和技术同样适用于大多数的深....

【从零开始学习深度学习】3. 基于pytorch手动实现一个线性回归模型并进行min--batch训练

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

智能搜索推荐

智能推荐(Artificial Intelligence Recommendation,简称AIRec)基于阿里巴巴大数据和人工智能技术,以及在电商、内容、直播、社交等领域的业务沉淀,为企业开发者提供场景化推荐服务、全链路推荐系统开发平台、工程引擎组件库等多种形式服务,助力在线业务增长。

+关注