【网安AIGC专题】46篇前沿代码大模型论文、24篇论文阅读笔记汇总
写在最前面 本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。 本系列文章不仅涵盖了46篇关于前沿代码大模型的论文,还包含了24篇深度论文阅读笔记,全面覆盖了代码生成、漏洞检测、程...
【网安AIGC专题】46篇前沿代码大模型论文、24篇论文阅读笔记汇总
$stringUtil.substring( $!{XssContent1.description},200)...
24 LLM错误代码补全:机器学习顶会NeurIPS‘23 智能体评估:自行构建数据集Buggy-HumanEval、Buggy-FixEval+错误代码补全+修复模型【网安AIGC专题11.22】
$stringUtil.substring( $!{XssContent1.description},200)...
23REPEAT方法:软工顶会ICSE ‘23 大模型在代码智能领域持续学习 代表性样本重放(选择信息丰富且多样化的示例) + 基于可塑权重巩固EWC的自适应参数正则化 【网安AIGC专题11.22】
$stringUtil.substring( $!{XssContent1.description},200)...
22LLMSecEval数据集及其在评估大模型代码安全中的应用:GPT3和Codex根据LLMSecEval的提示生成代码和代码补全,CodeQL进行安全评估【网安AIGC专题11.22】
$stringUtil.substring( $!{XssContent1.description},200)...
20源代码模型的数据增强方法:克隆检测、缺陷检测和修复、代码摘要、代码搜索、代码补全、代码翻译、代码问答、问题分类、方法名称预测和类型预测对论文进行分组【网安AIGC专题11.15】
$stringUtil.substring( $!{XssContent1.description},200)...
18LLM4SE革命性技术揭秘:大型语言模型LLM在软件工程SE领域的全景解析与未来展望 - 探索LLM的多维应用、优化策略与软件管理新视角【网安AIGC专题11.15】作者汇报 综述
$stringUtil.substring( $!{XssContent1.description},200)...
19ContraBERT:顶会ICSE23 数据增强+对比学习+代码预训练模型,提升NLP模型性能与鲁棒性:处理程序变异(变量重命名)【网安AIGC专题11.15】
$stringUtil.substring( $!{XssContent1.description},200)...
16CODEIPPROMPT:顶会ICML’23 从GitHub到AI,探索代码生成的侵权风险与缓解策略的最新进展:训练数据`有限制性许可;模型微调+动态Token过滤【网安AIGC专题11.8】
$stringUtil.substring( $!{XssContent1.description},200)...
【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(下)
用例和补全流水线ASAP有3个组成部分:一个LLM,一个可用示例池(标记的输入-输出对,例如,带注释的代码),以及一个用于从代码中获取事实的静态分析工具。一个配置文件会指定这些组件。一旦配置完成后,开发人员对函数体Cin(如左图所示)调用ASAP ,并需要一个输出(例如,代码摘要)。 ...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。