文章 2023-12-19 来自:开发者社区

PyTorch实现DCGAN(生成对抗网络)生成新的假名人照片实战(附源码和数据集)

需要数据集和源码请点赞关注收藏后评论区留言~~~一、生成对抗网络(GAN)GAN(生成对抗网络)是用于教授DL模型以捕获训练数据分布的框架,因此可以从同一分布中生成新数据。它们由两个不同的模型组成,生成器和判别器。生成器的工作是生成看起来像训练图像的假图像,判别器的工作是查看图像并从生成器输出它是真实地训练图像还是伪图像。在训练过程中,生成器不断尝试通过生成越来越好地伪造品而使判别器的性能从超过....

PyTorch实现DCGAN(生成对抗网络)生成新的假名人照片实战(附源码和数据集)
文章 2023-12-19 来自:开发者社区

PyTorch搭建LSTM神经网络实现文本情感分析实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言~~~一、文本情感分析简介文本情感分析是指利用自然语言处理和文本挖掘技术,对带有情感色彩的主观性文本进行分析,处理和抽取的过程。接下来主要实现情感分类,情感分类又称为情感倾向性分析,是指对给定的文本,识别其中主观性文本的倾向是肯定的还是否定的,或者说是正面的还是负面的,这是情感分析领域研究最多的内容。通常,网络中存在大量的主观性文本和客观性文本,客观性文....

PyTorch搭建LSTM神经网络实现文本情感分析实战(附源码和数据集)
文章 2023-12-19 来自:开发者社区

PyTorch搭建图卷积神经网络(GCN)完成对论文分类及预测实战(附源码和数据集)

需要数据集和源码请点赞关注收藏后评论区留言~~~一、数据集简介我们将使用Cora数据集。该数据集共2708个样本点,每个样本点都是一篇科学论文,所有样本点被分为7个类别,类别分别是1)基于案例;2)遗传算法;3)神经网络;4)概率方法;5)强化学习;6)规则学习;7)理论每篇论文都由一个1433维的词向量表示,所以,每个样本点具有1433个特征。词向量的每个元素都对应一个词,且该元素只有0或1两....

PyTorch搭建图卷积神经网络(GCN)完成对论文分类及预测实战(附源码和数据集)
文章 2023-12-19 来自:开发者社区

PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)

需要数据集和源码请点赞关注收藏后评论区留言~~~一、实验数据准备我们使用的是MIT67数据集,这是一个标准的室内场景检测数据集,一个有67个室内场景,每类包括80张训练图片和20张测试图片 读者可通过以下网址下载但是数据集较大,下载花费时间较长,所以建议私信我发给你们数据集将下载的数据集解压,主要使用Image文件夹,这个文件夹一共包含6700张图片,还有它们标签的txt文件大体流程分为以下几步....

PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)
文章 2023-05-11 来自:开发者社区

【Pytorch神经网络实战案例】31 TextCNN模型分析IMDB数据集评论的积极与消极

卷积神经网络不仅在图像视觉领域有很好的效果,而且在基于文本的NLP领域也有很好的效果。TextCN如模型是卷积神经网络用于文本处理方面的一个模型。在TextCNN模型中,通过多分支卷积技术实现对文本的分类功能。1 TextCNN1.1 TextCNN模型结构TexCNN模型是利用卷积神经网络对文本进行分类的模型,该模型的结构可以分为以下4个层次:1.1.1 词嵌入层将每个词对应的向量转化成多维度....

【Pytorch神经网络实战案例】31 TextCNN模型分析IMDB数据集评论的积极与消极
文章 2023-05-11 来自:开发者社区

【Pytorch神经网络实战案例】29 【代码汇总】GitSet模型进行步态与身份识别(CASIA-B数据集)

1 GaitSet_DataLoader.pyimport numpy as np # 引入基础库 import os import torch.utils.data as tordata from PIL import Image from tqdm import tqdm import random # 1.1定义函数,加载文件夹的文件名称 # load_data函数, 分为3个步...

【Pytorch神经网络实战案例】29 【代码汇总】GitSet模型进行步态与身份识别(CASIA-B数据集)
文章 2023-05-11 来自:开发者社区

【Pytorch神经网络实战案例】28 GitSet模型进行步态与身份识别(CASIA-B数据集)

1 CASIA-B数据集本例使用的是预处理后的CASIA-B数据集, 数据集下载网址如下。    http://www.cbsr.ia.ac.cn/china/Gait%20Databases%20cH.asp该数据集是一个大规模的、多视角的步态库。其中包括124个人,每个人有11个视角(0,18,36,...,180),在3种行走条件(普通、穿大衣、携带包裹)下采集。1.1....

【Pytorch神经网络实战案例】28 GitSet模型进行步态与身份识别(CASIA-B数据集)
文章 2023-05-11 来自:开发者社区

【Pytorch神经网络实战案例】25 (带数据增强)基于迁移学习识别多种鸟类(CUB-200数据集)

1 数据增强在目前分类效果最好的EficientNet系列模型中,EfficientNet-B7版本的模型就是使用随机数据增强方法训练而成的。RandAugment方法也是目前主流的数据增强方法,用RandAugment方法进行训练,会使模型的精度得到提升。2 RandAugment2.1 RandAugment方法简介RandAugment方法是一种新的数据增强方法,它比自动数据增强(AutO....

【Pytorch神经网络实战案例】25 (带数据增强)基于迁移学习识别多种鸟类(CUB-200数据集)
文章 2023-05-11 来自:开发者社区

【Pytorch神经网络实战案例】24 基于迁移学习识别多种鸟类(CUB-200数据集)

1 迁移学习在实际开发中,常会使用迁移学习将预训练模型中的特征提取能力转移到自己的模型中。1.1 迁移学习定义迁移学习指将在一个任务上训练完成的模型进行简单的修改,再用另一个任务的数据继续训练,使之能够完成新的任务。1.1.1 迁移学习举例在ImageNet数据集上训练过的ResNet模型,其任务是进行图片分类,可以对其进行修改使用在目标定位任务上。1.2 迁移学习的分类迁移学习是机器学习的分支....

【Pytorch神经网络实战案例】24 基于迁移学习识别多种鸟类(CUB-200数据集)
文章 2023-05-11 来自:开发者社区

【Pytorch神经网络实战案例】22 基于Cora数据集实现图注意力神经网络GAT的论文分类

注意力机制的特点是,它的输入向量长度可变,通过将注意力集中在最相关的部分来做出决定。注意力机制结合RNN或者CNN的方法。1 实战描述【主要目的:将注意力机制用在图神经网络中,完成图注意力神经网络的结构和搭建】1.1 实现目的有一个记录论文信息的数据集,数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,使模型学习已有论文的分类....

【Pytorch神经网络实战案例】22 基于Cora数据集实现图注意力神经网络GAT的论文分类

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

域名解析DNS

关注DNS行业趋势、技术、标准、产品和最佳实践,连接国内外相关技术社群信息,追踪业内DNS产品动态,加强信息共享,欢迎大家关注、推荐和投稿。

+关注