Meta AI开源CLIP-DINOiser | 如何将自监督DINO的Trick教给CLIP?这里就是答案!
CLIP模型得益于其与任意文本提示的流畅交互,显示出惊人的零样本能力。然而,其缺乏空间意识,使其在不需要额外的微调步骤(通常使用标注,可能会潜在地抑制其原始的开放词汇属性)的情况下,不适合处理密集的计算机视觉任务,例如语义分割。同时,自监督表示方法已经展示了在没有人为标注和明确监督的情况下,具有良好的局部化属性。 在本工作中,作者取两者之长,提出了一种零样本开放词汇语义分割方法,该方法...

LeCun领导下的Meta AI,押注自监督
自监督学习真的是通往 AGI 的关键一步?Meta 的 AI 首席科学家 Yann LeCun 在谈到「此时此刻要采取的具体措施」时,也没有忘记远期的目标。他在一次采访时说:「我们想要构建像动物和人类一样学习的智能机器。」近几年,Meta 发表了一系列关于 AI 系统自监督学习(SSL)的论文。LeCun 坚定地认为,SSL 是 AI 系统的必要前提,它可以帮助 AI 系统构建世界模型,以获得类....

7 Papers & Radios | Meta AI首个多模态自监督算法;牛津、谷歌等撰文综述AutoRL
本周论文包括Meta AI提出了一种名为 data2vec 的自监督学习新架构,在多种模态的基准测试中超越了现有 SOTA 方法;谷歌、MIT 等提出分类器可视化解释方法 StylEx等。目录data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language Explaining in....

超越ImageNet预训练,Meta AI提出SplitMask,小数据集也能自监督预训练
大规模数据集对自监督预训练是必要的吗?Meta AI 认为,小数据集也能自监督预训练,效果还不错。目前,计算机视觉神经网络被大量参数化:它们通常有数千万或数亿个参数,这是它们成功利用大型图像集合 (如 ImageNet) 的关键。然而,这些高容量模型往往会在小型(包含数十万张图像)甚至中型数据集上过度拟合。因此,有研究者指出在 2014 年:学习 CNN 的过程相当于估计模型数百万个参数,这需要....

7 Papers & Radios | Meta AI首个多模态自监督算法;牛津、谷歌等撰文综述AutoRL
目录data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language Explaining in Style: Training a GAN to explain a classifier in StyleSpace Automated Reinforcement Learning ....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
产品推荐
阿里云机器学习平台PAI
阿里云机器学习PAI(Platform of Artificial Intelligence)面向企业及开发者,提供轻量化、高性价比的云原生机器学习平台,涵盖PAI-iTAG智能标注平台、PAI-Designer(原Studio)可视化建模平台、PAI-DSW云原生交互式建模平台、PAI-DLC云原生AI基础平台、PAI-EAS云原生弹性推理服务平台,支持千亿特征、万亿样本规模加速训练,百余落地场景,全面提升工程效率。
+关注