【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)

【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)

需要全部源码请点赞关注收藏后评论区留言私信~~~基本思想迭代关系式是迭代法应用时的关键问题,而梯度下降(Gradient Descent)法正是用梯度来建立迭代关系式的迭代法。 机器学习模型的求解一般可以表示为:其中,f(x)为机器学习模型的损失函数。也称为无约束最优化模型。对于无约束最优化问题ar...

Python机器学习(三):梯度下降法

梯度下降法不是一种机器学习方法,而是一种基于搜索的最优化方法,它的作用的最小化一个损失函数。相应地,梯度上升可以用于最大化一个效用函数。本文主要讲解梯度下降。 假设损失函数为凸函数 1.批量梯度下降 以线性回归为例子,梯度下降法就是不断更新Θ,每次更新的大小就是一个常数乘上梯度。其中这个常数η称为学...

高校精品课-华东师范大学 - Python数据科学基础与实践

101 课时 |
661 人已学 |
免费

【科技少年】Python基础语法

24 课时 |
1454 人已学 |
免费

【科技少年】Python绘画编程第一课

20 课时 |
3313 人已学 |
免费
开发者课程背景图

Python机器学习算法入门之梯度下降法实现线性回归

1. 背景 文章的背景取自An Introduction to Gradient Descent and Linear Regression,本文想在该文章的基础上,完整地描述线性回归算法。部分数据和图片取自该文章。没有太多时间抠细节,所以难免有什么缺漏错误之处,望指正。 线性回归的目标很简单,就是...

Python3入门机器学习 - 梯度下降法

梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

社区圈子

Python学习站
Python学习站
Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。
689+人已加入
加入
相关电子书
更多
给运维工程师的Python实战课
Python 脚本速查手册
ACE 区域技术发展峰会:Flink Python Table API入门及实践
立即下载 立即下载 立即下载

Python更多机器学习相关