CNN的应用场景
CNN(卷积神经网络)的应用场景非常广泛,特别是在处理具有网格结构的数据(如图像、视频)时表现出色。以下是一些主要的应用场景: 一、图像分类 CNN能够自动学习图像中的特征,并将其用于图像分类任务。通过训练大规模的图像数据集,CNN可以识别出图像中的对象、场景和物体等。例如...
m基于CNN卷积网络和GEI步态能量图的步态识别算法MATLAB仿真,测试样本采用现实拍摄的场景进行测试,带GUI界面
1.算法描述 目前关于步态识别算法研究主要有两种:基于模型的方法和非基于模型的方法。基于模型的步态识别方法优点在于能够很好的体现步态图像序列当前的变化,也能够预测过去和未来的状态。基于非模型的方法是通过对步态相关特征进行预测来建立相邻帧间的关系,其中特征包括位置、速度、形状等,其中基于形状特征的方法较为常见。Lee等先将人体的侧影图像序列进行二值化处理,根据人体的质心比例关系将人体划分为7...
CVPR 2018 | 使用CNN生成图像先验,实现更广泛场景的盲图像去模糊
现有的最优方法在文本、人脸以及低光照图像上的盲图像去模糊效果并不佳,主要受限于图像先验的手工设计属性。本文研究者将图像先验表示为二值分类器,训练 CNN 来分类模糊和清晰图像。实验表明,该图像先验比目前最先进的人工设计先验更具区分性,可实现更广泛场景的盲图像去模糊。 简介 盲图像去模糊(blind image deblurring)是图像处理和计算机视觉领域中的一个经典问题,它的目标是将模糊输.....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。