【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
学习目标 了解有关人名分类问题和有关数据 掌握使用RNN构建人名分类器实现过程 案例介绍 关于人名分类问题:以一个人名为输入, 使用模型帮助我们判断它最有可能是来自哪一个国家的人名, 这在某些国际化公司的业务中具有重要意义, 在用户注册过程中, 会根据用户填写的名字直接给他分配可能的国家或地区选项, 以及该国家或地区的国旗, 限制手机号...
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
同上一篇文章中的搜索近义词和类比词一样,文本分类也属于词嵌入的下游应用。本文,我们将应用预训练的词向量和含多个隐藏层的双向循环神经网络,来判断一段不定长的文本序列中包含的是正面还是负面的情绪。 导入所需的包或模块。 import collections import os im...
【从零开始学习深度学习】34. Pytorch-RNN项目实战:RNN创作歌词案例--使用周杰伦专辑歌词训练模型并创作歌曲【含数据集与源码】
RNN项目实战使用周杰伦专辑歌词训练模型并创作歌曲 本文将介绍如何预处理一个语言模型数据集,并将其转换成字符级循环神经网络所需要的输入格式。然后通过循环神经网络RNN进行模型训练,然后使用训练好的模型创作歌曲。 语言模型数据集采用的是我最喜欢的歌手周杰伦第一张专辑《Jay》到第十张专辑《跨时代》中的所有歌词,下面来开始我们的项目吧。 1.语言模型数据集预处理 1....
【PyTorch实战演练】基于全连接网络构建RNN并生成人名
0. 前言 按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解及成果,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。 本文基于PyTorch中的全连接模块 nn.Linear() 构建RNN,并使用人名数据训练RNN,最后使用RNN生成人名。 1. RNN简介 循环神经网络(Recurrent...
PyTorch搭建RNN联合嵌入模型(LSTM GRU)实现视觉问答(VQA)实战(超详细 附数据集和源码)
需要源码和数据集请点赞关注收藏后评论区留言私信~~~一、视觉问题简介视觉问答(VQA)是一种同时设计计算机视觉和自然语言处理的学习任务。简单来说,VQA就是对给定的图片进行问答,一个VQA系统以一张图片和一个关于这张图片形式自由,开放式的自然语言问题作为输入,生成一条自然语言答案作为输出,视觉问题系统综合运用到了目前的计算机视觉和自然语言处理的技术,并设计模型设计,实验,以及可视化。VQA问题的....
PyTorch搭建循环神经网络(RNN)进行文本分类、预测及损失分析(对不同国家的语言单词和姓氏进行分类,附源码和数据集)
需要源码和数据集请点赞关注收藏后评论区留言~~~下面我们将使用循环神经网络训练来自18种起源于不同语言的数千种姓氏,并根据拼写方式预测名称的来源。一、数据准备和预处理总共有18个txt文件,并且对它们进行预处理,输出如下部分预处理代码如下from __future__ import unicode_literals, print_function, division from io import....
循环神经网络RNN完全解析:从基础理论到PyTorch实战2
Bi-RNN的结构Bi-RNN由两个独立的RNN层组成,一个正向层和一个反向层。这两个层分别处理输入序列的正向和反向版本。2.3.1 正向层处理输入序列从第一个元素到最后一个元素。2.3.2 反向层处理输入序列从最后一个元素到第一个元素。信息合并正向和反向层的隐藏状态通常通过连接或其他合并方式结合在一起,以形成最终的隐藏状态。Bi-RNN的实现示例以下代码展示了使用PyTorch构建Bi-RNN....
循环神经网络RNN完全解析:从基础理论到PyTorch实战1
在本文中,我们深入探讨了循环神经网络(RNN)及其高级变体,包括长短时记忆网络(LSTM)、门控循环单元(GRU)和双向循环神经网络(Bi-RNN)。文章详细介绍了RNN的基本概念、工作原理和应用场景,同时提供了使用PyTorch构建、训练和评估RNN模型的完整代码指南。作者 TechLead,拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿....
[深度学习实战]基于PyTorch的深度学习实战(补充篇)[RNN和LSTM基本原理、PyTorch中的LSTM、Embedding层]
一、前言 写这部分的文章很耗费精力。因为我自己是医学信息工程专业的,主攻方向其实是医学影像处理(主要是图像的快采集算法和后期图像质量优化)而非人工智能,甚至都不是纯科班出身,需要钻研的地方有很多。一是需要自己找书和文章看,二是还得想怎么把晦涩难懂的内容尽量讲解地通俗易懂。 但写作的过程也确实让我懂得了很多东西,我也很喜欢学习人工智能相关的知识。接下来可能会转战我的老本行—....
RNN、CNN、RNN、LSTM、CTC算法原理,pytorch实现LSTM算法
1. CNN算法CNN算法原理2. RNN算法最早CNN算法和普通算法类似,都是从由一个输入得到另一个输出,不同的输入之间没有联系,无法实现一些场景(例如:对电影每个时间点的时间类型进行分类,因为时间是连续的,每一个时间点都是由前面的时间点影响的,也就是说输入之间有关联)2.1 典型的序列数据文章里文字内容语音里音频内容股票市场中价格走势2.2 基本原理RNN 跟传统神经网络最大的区别在于每次都....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
pytorch rnn相关内容
pytorch您可能感兴趣
- pytorch构建
- pytorch大规模
- pytorch部署
- pytorch教程
- pytorch损失
- pytorch微调
- pytorch loss
- pytorch嵌入模型
- pytorch特性
- pytorch lightning
- pytorch模型
- pytorch神经网络
- pytorch实战
- pytorch训练
- pytorch学习
- pytorch数据集
- pytorch官方教程
- pytorch tensorflow
- pytorch代码
- pytorch安装
- pytorch卷积
- pytorch gpu
- pytorch卷积神经网络
- pytorch数据
- pytorch源码
- pytorch案例
- pytorch框架
- pytorch学习笔记
- pytorch版本
- pytorch张量