文章 2024-04-24 来自:开发者社区

python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译

原文链接:http://tecdat.cn/?p=8438** 在本文中,我们将看到如何创建语言翻译模型,这也是神经机器翻译的非常著名的应用。我们将使用seq2seq通过Python的Keras库创建我们的语言翻译模型。 假定您对循环神经网络(尤其是LSTM)有很好的了解。本文中的代码是使用Keras库用Python编写的。 库和配置设置 ...

python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译
文章 2024-04-23 来自:开发者社区

Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测

原文链接:http://tecdat.cn/?p=27042 该数据根据世界各国提供的新病例数据(查看文末了解数据获取方式)提供。 获取时间序列数据 df=pd....

Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测
文章 2024-04-23 来自:开发者社区

Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性

原文链接:http://tecdat.cn/?p=26562 该项目包括: 自 2000 年 1 月以来的股票价格数据。我们使用的是 Microsoft 股票。 将时间序列数据转换为分类问题。 使用 TensorFlow 的 LSTM 模型 由 MSE 衡量的预测准确性 GPU 设置(如果可用) ...

Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性
文章 2024-04-23 来自:开发者社区

数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子

原文链接:http://tecdat.cn?p=26519  一个简单的编码器-解码器LSTM神经网络应用于时间序列预测问题:预测天然气价格,预测范围为 10 天。“进入”时间步长也设置为 10 天。) 只需要 10 天来推断接下来的 10 天。可以使用 10 天的历史数据集以在线学习的方式重新训练网络。 数据集是天然气价格(查看文末了解数据获取方式) ,具有...

数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
文章 2024-04-18 来自:开发者社区

【视频】Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析|数据分享

长短期记忆网络——通常称为“LSTM”——是一种特殊的RNN递归神经网络,能够学习长期依赖关系。 视频:LSTM神经网络架构和工作原理及其在Python中的预测应用 ...

【视频】Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析|数据分享
文章 2024-04-18 来自:开发者社区

【视频】LSTM神经网络架构和原理及其在Python中的预测应用|数据分享

长短期记忆网络——通常称为“LSTM”——是一种特殊的RNN递归神经网络,能够学习长期依赖关系。 视频:LSTM神经网络架构和工作原理及其在Python中的预测应用 什么是依赖关系? 假设您在观看视频时记得前一个场景,或者在阅读一本书时您知道前一章发生了什么。 ...

【视频】LSTM神经网络架构和原理及其在Python中的预测应用|数据分享
文章 2024-04-18 来自:开发者社区

Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析

原文链接:http://tecdat.cn/?p=23544  下面是一个关于如何使用长短期记忆网络(LSTM)来拟合一个不平稳的时间序列的例子。 每年的降雨量数据可能是相当不平稳的。与温度不同,温度通常在四季中表现出明显的趋势,而雨量作为一个时间序列可能是相当不平稳的。夏季的降雨量与冬季的降雨量一样多是很常见的。 下面是某地区2020年11月降雨量的图解。 ...

Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析
文章 2024-04-17 来自:开发者社区

PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据

原文链接:http://tecdat.cn/?p=24431  配置神经网络很困难,因为没有关于如何去做的好的理论。 您必须系统地从动态和客观结果的角度探索不同的参数配置,以尝试了解给定预测建模问题的情况。 在本教程中,您将了解如何探索如何针对时间序列预测问题配置 LSTM 网络参数。 完成本教程后,您将了解: 如何调整和解释训练时期...

文章 2024-04-17 来自:开发者社区

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化2

如果指数式移动平均数这么好,为什么还需要更好的模型? 拟合结果很好,遵循真实的分布(并且由非常低的MSE证明)。实际上,仅凭第二天的股票市场价格是没有意义的。就我个人而言,我想要的不是第二天的确切股市价格,而是未来30天的股市价格是上涨还是下跌。尝试这样做,你会发现EMA方法的缺陷。 现在尝试在窗口中进行预测(比如你预测未来2天的窗口,而不是仅仅预测未来一天)。然后你会意识到EM...

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化2
文章 2024-04-17 来自:开发者社区

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化1

本文探索Python中的长短期记忆(LSTM)网络,以及如何使用它们来进行股市预测。 在本文中,你将看到如何使用一个被称为长短时记忆的时间序列模型。LSTM模型很强大,特别是在保留长期记忆方面。在本文中,你将解决以下主题。 理解为什么你需要能够预测股票价格的变动。 下载数据 - 使用从雅虎财经收集的股市数据 分割训练-测试数据,并进行数据归一化 ...

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化1

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。