类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
在人工智能领域,深度神经网络(DNN)已经在广泛的应用中取得了成功,包括作为人类行为模型在视觉任务中的应用。然而,神经网络的训练和人类学习在根本上存在差异,神经网络往往无法像人类一样稳健地泛化,这引发了关于它们底层表示相似性的疑问。 这篇论文提出了一个关键的不匹配点,即视觉模型和人类之...
浅谈神经网络训练方法,Deepmind更青睐正向传播
雷锋网(公众号:雷锋网)按:本文作者文海宁,银行算法工程师。 深度学习的神经网络训练方法有除了典型的反向传播,也有被Deepmind青睐的正向传播,以及以BAM网络背后的双向传播,本文将对这些训练方法进行简单的探讨,如果你有兴趣,欢迎留言。 1. 典型的BAM网络 深度学习目前非常火爆,追踪溯源,深度学习源于神经网络。BP神经是反向误差训练的典例。因为反向传播需要计算每个参数的梯度,从而能够使用....
Google AI与Deepmind强强联合,推出新工具加速神经网络稀疏化进程
神经网络具有的推理功能,使得许许多多实时应用变为可能——比如姿态估计和背景模糊。这些应用通常拥有低延迟的特点,并且还具有隐私意识。 通过使用像TensorFlow Lite这样的ML推理框架和XNNPACK ML加速库,工程师得以在模型大小、推理速度和预测质量之间找到一个最佳点来优化他们的模型,以便在各种设备上运行。 优化模型的一种方法是使用稀疏神经网络,这些网络的很大一部分....
DeepMind最新发现!神经网络的性能竟然优于神经符号模型
【新智元导读】DeepMind最新的研究结果再一次打破了传统认知——根据研究人员的最新发现,神经网络对数据的要求,居然比神经符号模型还要低!不仅如此,实验结果证实,神经网络的在关键任务上的效果还要更好。不需要预先训练,完全无监督,居然这么神奇?按照之前的常识,结合了算法和符号推理技术的神经符号模型(Neurosymbolic Models),会比神经网络更适合于预测和解释任务,此外,神经符号模型....
DeepMind两篇新论文研究用神经网络做关系推理,探索人类智慧核心
本文来自AI新媒体量子位(QbitAI) 关系推理是什么?DeepMind举了这么几个例子: 阿加莎·克里斯蒂小说的读者一点点地拼凑证据猜测犯人;小朋友追到球的前边防止它滚进河里;在市场上买东西的人做各方面的比较,挑选猕猴桃或者芒果。 最近,这家公司发表了两篇论文,探讨了神经网络如何用非结构化数据进行复杂关系推理,并在官方博客上对这个研究课题和两篇论文进行了介绍。 以下是DeepMind官方...
DeepMind发布Sonnet 帮你用TensorFlow快速搭建神经网络
去年 DeepMind 作出决定,将全部研究搬到 TensorFlow 框架上进行。 近一年时间过去,回头来看,DeepMind 认为这项选择十分正确——许多模型的学习过程大幅加速;TensorFlow 内置的分布式训练功能,还帮助工程师们极大得精简了代码。 在这过程中,DeepMind 发现:TensorFlow 的灵活性和可适性,使得以它为基础、为特定任务开发专用高级框架变得十分可行。 De....
重磅 | DeepMind新神经网络学会关系推理,还击败了人类
雷锋网消息 Google旗下的DeepMind最近开发出了一种用于关系推理的人工神经网络,缩小了人工智能与人类在关系推理方面的差距。 你正考虑入手的房子附近有多少个公园?某家餐厅最好的晚餐和红酒搭配是什么?这些日常问题都需要用到关系推理。关系推理是高级思维的重要组成部分,而AI目前还难以掌握。不过, DeepMind的研究人员已经开发出了一种简单算法来进行关系推理,而且该算法已经在复杂图像的理.....
DeepMind 开源 Sonnet:在 TensorFlow 中快速构建神经网络
DeepMind 发布了 Sonnet,一个在 TensorFlow 之上用于构建复杂神经网络的开源库。这是继 DeepMind Lab 后,这家谷歌旗下的公司的又一次开源举措。Sonnet 的开源意味着 DeepMind 构建的模型可以更轻松地与所有开发者共享。 与 Torch/NN 类似,Sonnet 库使用面向对象的方法,允许创建定义一些前向传导计算的模块。模块用一些输入 Tensor 调....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。