Golang 实现轻量、快速的基于 Reactor 模式的非阻塞 TCP 网络库
在 linux 环境下,gev 底层使用 epoll ,这是 gev 会专注优化的地方。在 mac 下底层使用 kqueue,可能不会过多关注这部分的优化,毕竟很少有用 mac 做服务器的(Windows 环境"暂"不支持)。 特点 基于 epoll 和 kqueue 实现的高性能事件循环 支持多核多线程 动态扩容 Ring Buffer 实现的读...

RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
一、本文介绍 本文记录的是利用GsConv优化RT-DETR的颈部网络。深度可分离卷积(DSC)在轻量级模型中被广泛使用,但其在计算过程中会分离输入图像的通道信息,导致特征表示能力明显低于标准卷积(SC),而GsConv采用混合策略,使DSC的输出通过打乱特征更接近SC,从而优化模型的性能。本文利用GsConv+Slim Neck改进RT-DETR的颈部网络,==使其在提升特征表示能力的同时降低....

RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
一、本文介绍 本文记录的是基于 GhostNetV3 的 RT-DETR轻量化改进方法研究。GhostNetV3的轻量模块采用重参数化方法,训练时为深度可分离卷积和1×1卷积添加线性并行分支,推理时通过逆重参数化移除分支、折叠操作,能够在不增加推理成本的同时提高性能,从而实现RT-DETR的轻量化改进。 专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backb.....

RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
一、本文介绍 本文记录的是基于MobileNet v2的 RT-DETR轻量化改进方法研究。MobileNet v2采用深度可分离卷积将标准卷积分解为深度卷积和1×1卷积,大幅削减计算量。同时,引入线性瓶颈层来防止非线性在低维空间破坏信息,避免非线性层导致的性能下降问题。本文将MobileNet v2应用到RT-DETR中,借助其高效的结构和特性,在保持一定精度的前提下,显著降低 RT-DETR....

RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
一、本文介绍 本文记录的是基于MobileNet V1的RT-DETR轻量化改进方法研究。MobileNet V1基于深度可分离卷积构建,其设计旨在满足移动和嵌入式视觉应用对小型、低延迟模型的需求,具有独特的模型收缩超参数来灵活调整模型大小与性能。本文将MobileNet V1应用到RT-DETR中,有望借助其高效的结构和特性,提升RT-DETR在计算资源有限环境下的性能表现,同时保持一定的精度....

RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
一、本文介绍 本文记录的是基于 EfficientNet v2 的 RT-DETR轻量化改进方法研究。EfficientNet v2针对EfficientNet v1存在的训练瓶颈,如大图像尺寸训练慢、早期深度卷积层速度慢以及等比例缩放各阶段非最优等情况进行改进,以实现训练速度快、参数效率高和泛化能力好的优势,将其应用到RT-DETR中有望提升模型整体性能,在保证精度的同时降低模型复杂度和训练时....

RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
一、本文介绍 本文记录的是基于EfficientNet v1的 RT-DETR轻量化改进方法研究。EfficientNet采用了创新性的复合缩放方法,通过精心平衡网络宽度、深度和分辨率来提升性能。本文将EfficientNet的设计优势融入RT-DETR中,提升RT-DETR的性能与效率,使其在目标检测任务中表现更为出色。 本文配置了原模型中的efficientnet-b0、efficientn....

RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
一、本文介绍 本文记录的是利用PP-LCNet中的DepSepConv模块优化RT-DETR。本文利用DepSepConv模块改善模型结构,使模型在几乎不增加延迟的情况下提升网络准确度。 模型 参数量 计算量 推理速度 rtdetr-l 32.8M 108.0GFLOPs 11.6ms Improv...

RT-DETR改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
一、本文介绍 本文记录的是基于EfficientViT的RT-DETR轻量化改进方法研究。EfficientViT通过构建多尺度线性注意力模块将全局感受野与多尺度学习相结合,并以此模块为核心构建网络,构建轻量级且硬件高效的操作,以提升性能并降低硬件部署难度。 本文在替换骨干网络中配置了原论文中的EfficientViT_M0、EfficientViT_M1、EfficientViT_M2、Eff....

RT-DETR改进策略【模型轻量化】| 替换华为的极简主义骨干网络:VanillaNet
一、本文介绍 本文记录的是基于VanillaNet的RT-DETR轻量化改进方法研究。VanillaNet的极简主义在于无 shortcut 连接,并且在网络的每个阶段仅使用一层卷积,无额外复杂模块,仅通过自身简洁的架构设计和训练策略,实现有效地训练和优化。 本文在替换骨干网络中配置了原论文中的vanillanet_5、vanillanet_6、vanillanet_7、vanillanet_8....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
域名解析DNS
关注DNS行业趋势、技术、标准、产品和最佳实践,连接国内外相关技术社群信息,追踪业内DNS产品动态,加强信息共享,欢迎大家关注、推荐和投稿。
+关注