深度学习基础入门篇[8]::计算机视觉与卷积神经网络、卷积模型CNN综述、池化讲解、CNN参数计算
深度学习基础入门篇[8]::计算机视觉与卷积神经网络、卷积模型CNN综述、池化讲解、CNN参数计算 1.计算机视觉与卷积神经网络 1.1计算机视觉综述 计算机视觉作为一门让机器学会如何去“看”的学科,具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场景和故事,以此来模拟人脑视觉系统。因此,计算机视觉也通常被...
深度学习入门(3)神经网络参数梯度的计算方式
前言上一篇文章介绍了神经网络需要达到的最终目标,即使所定义的损失函数值达到尽可能的小。那么,是如何达到使得损失函数的值最小的呢?其实,最常使用的核心大招就是“梯度法”进行参数的更新优化,最终达到使得损失函数最小的目的。本文将介绍神经网络中参数的梯度是如何计算的。在介绍梯度法之前先简单介绍一下所用到的数值微分方面的数学知识,以帮助理解后续梯度法的计算过程,如果知道这一部分知识的同学,可以直接跳过本....
深度学习入门(9)神经网络Affine与Softmax层的计算图表示方式及其误差反向传播的代码实现
1 Affine与Softmax层的实现1.1 Affine层神经元的加权和可以用Y = np.dot(X, W) + B计算出来。然后,Y 经过激活函数转换后,传递给下一层。这就是神经网络正向传播的流程。神经网络的正向传播中进行的矩阵的乘积运算在几何学领域被称为“仿射变换”。将进行仿射变换的处理实现为“Affine层”。Y = np.dot(X, W) + B,计算图如下:式中WT的T表示转置....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
网络更多入门相关
域名解析DNS
关注DNS技术、标准、产品和行业趋势,连接国内外相关技术社群信息,加强信息共享。
+关注