区间预测 | MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测
区间预测 | MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测效果一览基本介绍区间预测 | MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测QRBiLSTM是一种双向长短期记忆(QR-LSTM)神经网络的变体,用于分位数回归时间序列区间预测。该模型可以预测时间序列的不同分位数的值,并且可以提供置信区间和风险评估等信息。QR-LSTM....

时序预测 | MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)
时序预测 | MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价) @TOC 预测结果 基本介绍 MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)1.MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价);2.运行环境Matlab20...

时序预测 | MATLAB实现基于CNN-BiLSTM卷积双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)
时序预测 | MATLAB实现基于CNN-BiLSTM卷积双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍MATLAB实现基于CNN-BiLSTM卷积双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)1.MATLAB实现基于CNN-BiLSTM卷积双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价);2.运行环境Matlab2020及以上....

多维时序 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络的数据多变量时间序列预测
多维时序 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络的数据多变量时间序列预测 @TOC 效果一览 基本介绍 多维时序 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络的数据多变量时间序列预测MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络的数据多变量时间序列预测输入7个特征,输出1个,即多输入单输出;优化参数为学习率,批大小,正则化系数。运行...

基于时空RBF神经网络的混沌时间序列预测(Matlab代码实现)
1 概述文献来源: 由于动态性质,混沌时间序列很难预测。在传统的信号处理方法中,信号仅在时域或空间域中处理。信号的时空分析通过利用来自时间和空间域的信息,提供了比传统的一维方法更多的优势。在此,我们提出了一种RBF神经网络的时空扩展,用于预测混沌时间序列。该算法利用时空正交性的概念,分别处理混沌级数的时间动力学和空间非线性(复杂度)。探索了所提出的RBF架构,用于麦基-格拉斯时间序列的预测,并将....

【时序预测】基于粒子群优化算法优化BP神经网络的时间序列预测附matlab代码
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab仿真内容点击智能优化算法 神经网络预测 雷达通信 无线传感器 &...

基于Kaggle训练集预测的多层人工神经网络的能源消耗的时间序列预测研究(Matlab代码实现)
1 概述本文为能源消耗的时间序列预测,在Matlab中实现。该预测采用多层人工神经网络,基于Kaggle训练集预测未来能源消耗。对于基于Kaggle训练集预测能源消耗的时间序列预测,从以下研究:1. 数据探索与可视化:首先,探索和分析你的训练集数据。了解数据的特征、分布和关系,并使用适当的可视化技术来揭示其中的模式和趋势。2. 数据预处理:对数据进行预处理,以便于模型的训练和预测。这可能包括处理....

通过展开序列ISTA(SISTA)算法创建的递归神经网络(RNN)(Matlab代码实现)
1 概述递归神经网络(recursive neural network)是具有树状阶层结构且网络节点按其连接顺序对输入信息进行递归的人工神经网络(Artificial Neural Network, ANN),是深度学习(deep learning)算法之一。递归神经网络(recursive neural network)提出于1990年,被视为循环神经网络(recurrent neural n....

采用多层人工神经网络的能源消耗的时间序列预测(Matlab代码实现)
1 概述该项目为能源消耗的时间序列预测,在Matlab中实现。该预测采用多层人工神经网络,基于Kaggle训练集预测未来能源消耗。2 运行结果 3 参考文献[1]程静,郑定成,吴继权.基于时间序列ARMA模型的广东省能源需求预测[J].能源工程,2010(01):1-5.DOI:10.16189/j.cnki.nygc.2010.01.012.4 Matlab代码seed = 52 ....

MATLB|基于小波神经网络的短时交通流量时间序列预测
1 概述根据小波分析具有良好的时频分析特性,将短时交通流时间序列进行尺度分解,将其分解到不同的尺度空间,并进行单支重构,得到相应的高频分量和低频分量,所得分量相对成分简单、数据变化平稳。对各分量采用不同的预测方法进行预测,由自相关函数和偏相关函数的截尾性和拖尾性判断,高频分量采用ARMA模型进行预测;低频近似分量由于呈现较有规律的函数曲线,而神经网络具有很强的非线性逼近能力,所以采用GRNN网络....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。