文章 2017-08-01 来自:开发者社区

图像处理一定要用卷积神经网络?这里有一个另辟蹊径的方法

近年来,卷积神经网络(CNN)以其局部权值共享的特殊结构在语音识别和图像处理等方面得到了快速发展,特别是大型图像处理方面,更是表现出色,逐渐成为了行业内一个重要的技术选择。 不过,好用并不代表万能。这里雷锋网从一个卫星图像分析的具体实例出发,介绍了CNN建模和本地拉普拉斯滤波这两种分析技术的效果对比,最终我们发现,本地拉普拉斯滤波的效果反而更好。   卷积神经网络 为了从卫星图...

图像处理一定要用卷积神经网络?这里有一个另辟蹊径的方法
文章 2017-08-01 来自:开发者社区

浅谈神经网络训练方法,Deepmind更青睐正向传播

雷锋网(公众号:雷锋网)按:本文作者文海宁,银行算法工程师。 深度学习的神经网络训练方法有除了典型的反向传播,也有被Deepmind青睐的正向传播,以及以BAM网络背后的双向传播,本文将对这些训练方法进行简单的探讨,如果你有兴趣,欢迎留言。 1. 典型的BAM网络 深度学习目前非常火爆,追踪溯源,深度学习源于神经网络。BP神经是反向误差训练的典例。因为反向传播需要计算每个参数的梯度,从而能够使用....

浅谈神经网络训练方法,Deepmind更青睐正向传播
文章 2017-08-01 来自:开发者社区

深度学习的这些坑你都遇到过吗?神经网络 11 大常见陷阱及应对方法

如果你的神经网络不工作,该怎么办?作者在这里列出了建神经网络时所有可能做错的事情,以及他自己的解决经验。 忘记规范化数据 忘记检查结果 忘记预处理数据 忘记使用正则化 使用的batch太大 使用了不正确的学习率 在最后层使用了错误的激活函数 你的网络包含了Bad Gradients 初始化网络权重不正确 你使用的网络太深了 使用隐藏单元的数量不对 1.忘记规范化数据了 问题描述 在使用神经...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。