【R语言实战】——金融时序ARIMA建模
该篇文章实现了对深证综指收益率数据进行ARIMA建模及预测,包括对原始收益数据的处理;平稳性及白噪声检验;ACF/PACF定阶;EACF表定阶;模型拟合;残差检验;模型优化;模型预测,同时附带完整代码及相关分析。 1 对数收...

数据分享|R语言武汉流动人口趋势预测:灰色模型GM(1,1)、ARIMA时间序列、logistic逻辑回归模型
全文链接:http://tecdat.cn/?p=32496 人口流动与迁移,作为人类产生以来就存在的一种社会现象,伴随着人类文明的不断进步从未间断(点击文末“阅读原文”获取完整代码数据)。 人力资源是社会文明进步、人民富裕幸福、国家繁荣昌盛的核心推动力量。当前,我国经济正处于从以政府主导的投资驱动型的经济“旧常态”向以市场需求为主导的经济“新常态”转型过渡期。 ...

数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告
全文链接:http://tecdat.cn/?p=32427 分析师:Xueyan Liu 在当前海量数据和资源的情况下,面对客户需求,如何找准需求标的和问题核心,并围绕该目标问题挖掘数据、确定市场重要关联因素、分层分类筛选可能关联因素,是当前数据分析运用的关键(点击文末“阅读原文”获取完整数据)。 解决方案 ...

数据分享|R语言ARIMA模型分析预测上海空气质量指数AQI时间序列
全文链接:http://tecdat.cn/?p=32265 指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之间相关性没有要求(点击文末“阅读原文”获取完整代码数据)。 但是,如果你想使用指数平滑法计算出预测区间,那么预测误差必须是不相关的, 而且必须是服从零均值、 方差不变的正态分布。即使指数平滑法对时间序列连续数值之间相关性没有要求,在...

使用R语言进行时间序列(arima,指数平滑)分析(下)
使用R语言进行时间序列(arima,指数平滑)分析(上):https://developer.aliyun.com/article/1493892 这里1913-1920的预测绘制为蓝线,80%预测间隔绘制为橙色阴影区域,95%预测间隔绘制为黄色阴影区域。 对于每个时间点,“预测误差”被计算为观测值减去预测值。我们只能计算原始时间序列所涵盖的时间段的预测误差,即降雨数据...

使用R语言进行时间序列(arima,指数平滑)分析(上)
原文链接:http://tecdat.cn/?p=3609 您要分析时间序列数据的第一件事就是将其读入R,并绘制时间序列。您可以使用scan()函数将数据读入R,该函数假定连续时间点的数据位于包含一列的简单文本文件中(点击文末“阅读原文”获取完整代码数据)。 读时间序列数据 数据集如下所示: ...

R语言用ARIMA模型滑动时间窗口识别网络流量时间序列异常值
全文链接:http://tecdat.cn/?p=30597 最近我们被要求解决时间序列异常检验的问题。有客户在使用大量的时间序列。这些时间序列基本上是每10分钟进行一次的网络测量,其中一些是周期性的(即带宽),而另一些则不是(即路由流量)(点击文末“阅读原文”获取完整代码数据)。 他想要一个简单的算法来进行在线“异常值检测”。基本上,想将每个时间序列的整个历...

数据分享|R语言分析上海空气质量指数数据:kmean聚类、层次聚类、时间序列分析:arima模型、指数平滑法
全文链接:http://tecdat.cn/?p=30131 最近我们被客户要求撰写关于上海空气质量指数的研究报告。本文向大家介绍R语言对上海PM2.5等空气质量数据(查看文末了解数据免费获取方式)间的相关分析和预测分析,主要内容包括其使用实例,具有一定的参考价值,需要的朋友可以参考一下(点击文末“阅读原文”获取完整代码数据)。 ...

R语言用logistic逻辑回归和AFRIMA、ARIMA时间序列模型预测世界人口
全文下载链接 :http://tecdat.cn/?p=27493 本文应用R软件技术,分别利用logistic模型、ARFMA模型、ARIMA模型、时间序列模型对从2016到2100年的世界人口进行预测。 作者将1950年到2015年的历史数据作为训练集来预测85年的数据。模型稳定性经过修正后较好,故具有一定的参考价值。 引言 随...

数据分享|R语言用logistic逻辑回归和AFRIMA、ARIMA时间序列模型预测世界人口
原文链接 :http://tecdat.cn/?p=27493 本文应用R软件技术,分别利用logistic模型、ARFMA模型、ARIMA模型、时间序列模型对从2016到2100年的世界人口进行预测。作者将1950年到2015年的历史数据(查看文末了解数据获取方式)作为训练集来预测85年的数据。模型稳定性经过修正后较好,故具有一定的参考价值。 引...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。