文章 2024-05-06 来自:开发者社区

R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码

贝叶斯回归是一种统计方法,它使用贝叶斯定理来估计回归模型的参数。与传统的频率派回归方法不同,贝叶斯回归提供了参数的后验分布,而不仅仅是点估计。这意味着我们可以得到参数的不确定性度量,而不仅仅是单一的估计值(点击文末“阅读原文”获取完整代码数据)。 相关视频 ...

R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
文章 2024-05-06 来自:开发者社区

R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化

在统计建模过程中,经常会遇到空间自相关性的问题。空间自相关性是指相近位置的观测值往往比远离位置的观测值更相似。在尝试估计参数或进行预测时,空间自相关性可能会导致结果产生偏差(点击文末“阅读原文”获取完整代码数据)。 相关视频 ...

R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化

大数据之R语言速成与实战

30 课时 |
18143 人已学 |
免费
开发者课程背景图
文章 2024-05-06 来自:开发者社区

R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例

贝叶斯MCMC模拟是一个丰富的领域,涵盖了各种算法,共同目标是近似后验模型(点击文末“阅读原文”获取完整代码数据)。 相关视频 例如,使用的rstan包采用了一个Hamiltonian Monte C...

R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例
文章 2024-05-06 来自:开发者社区

R语言贝叶斯模型预测电影评分数据可视化分析

本文使用R语言帮助客户进行了贝叶斯模型预测电影评分,并对数据进行了可视化和分析(点击文末“阅读原文”获取完整代码数据)。 相关视频 文章创建了五个新的特征变量,包括电影类型、导演获奖情况、电影票房、评...

R语言贝叶斯模型预测电影评分数据可视化分析
文章 2024-04-30 来自:开发者社区

数据代码分享|R语言lasso回归、贝叶斯分析员工满意度调查数据、缺失值填充

全文链接:https://tecdat.cn/?p=33055 员工满意度对于组织绩效和竞争力具有重要影响,因此准确了解员工满意度的影响因素和有效管理成为管理者的关键任务。而员工满意度调查是常用的研究方法之一,通过收集员工的反馈数据来了解他们的期望、需求和感受(点击文末“阅读原文”获取完整代码数据)。 本文的目标是探讨使用R语言中的缺失值填充、lasso回归和...

数据代码分享|R语言lasso回归、贝叶斯分析员工满意度调查数据、缺失值填充
文章 2024-04-29 来自:开发者社区

课程视频|R语言bnlearn包:贝叶斯网络的构造及参数学习的原理和实例(下)

课程视频|R语言bnlearn包:贝叶斯网络的构造及参数学习的原理和实例(中):https://developer.aliyun.com/article/1496663 比较线性模型 如果参数估计因任何原因出现问题,我们可以用一组新的、来自不同方法的估计值来取代它们。 ...

课程视频|R语言bnlearn包:贝叶斯网络的构造及参数学习的原理和实例(下)
文章 2024-04-29 来自:开发者社区

课程视频|R语言bnlearn包:贝叶斯网络的构造及参数学习的原理和实例(中)

课程视频|R语言bnlearn包:贝叶斯网络的构造及参数学习的原理和实例(上):https://developer.aliyun.com/article/1496661 我们可以在热图中看到两个集群:第一个集群包括...

课程视频|R语言bnlearn包:贝叶斯网络的构造及参数学习的原理和实例(中)
文章 2024-04-29 来自:开发者社区

课程视频|R语言bnlearn包:贝叶斯网络的构造及参数学习的原理和实例(上)

全文链接:http://tecdat.cn/?p=32462 分析师:Chang Zhang 贝叶斯网络(BN)是一种基于有向无环图的概率模型,它描述了一组变量及其相互之间的条件依赖性(点击文末“阅读原文”获取完整课程代码数据)。 贝叶斯网络在信息不完备的情况下通过可以观察随机变量推断不可观察的随机变量,对于解决复杂的不确定性和关联性问题有很强的优势。...

课程视频|R语言bnlearn包:贝叶斯网络的构造及参数学习的原理和实例(上)
文章 2024-04-28 来自:开发者社区

R语言BUGS/JAGS贝叶斯分析: 马尔科夫链蒙特卡洛方法(MCMC)采样(2)

看起来更好!搜索算法可以很好地找到参数空间的高似然部分! 现在,让我们看一下“ shape”参数的链 ############# # 评估MCMC样本的“轨迹图” ... ##### Shape 参数 plot(1:chain.length,guesses[,'sha ...

R语言BUGS/JAGS贝叶斯分析: 马尔科夫链蒙特卡洛方法(MCMC)采样(2)
文章 2024-04-28 来自:开发者社区

R语言BUGS/JAGS贝叶斯分析: 马尔科夫链蒙特卡洛方法(MCMC)采样(1)

全文链接:http://tecdat.cn/?p=17884 在许多情况下,我们没有足够的计算能力评估空间中所有n维像素的后验概率 。在这些情况下,我们倾向于利用称为Markov-Chain Monte Carlo 算法的程序 。此方法使用参数空间中的随机跳跃来(最终)确定后验分布(点击文末“阅读原文”获取完整代码数据)。 相关视频:马尔可夫链原理可视化解释与...

R语言BUGS/JAGS贝叶斯分析: 马尔科夫链蒙特卡洛方法(MCMC)采样(1)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。