文章 2017-10-17 来自:开发者社区

机器学习基石--学习笔记02--Hard Dual SVM

背景 上一篇文章总结了linear hard SVM,解法很直观,直接从SVM的定义出发,经过等价变换,转成QP问题求解。这一讲,从另一个角度描述hard SVM的解法,不那么直观,但是可以避免feature转换时的数据计算,这样就可以利用一些很高纬度(甚至是无限维度)的feature转换,得到一些更精细的解。   拉格朗日乘子式 首先,回顾一下SVM问题的定义,如下: 线性约束很烦,不...

机器学习基石--学习笔记02--Hard Dual SVM
文章 2017-09-12 来自:开发者社区

机器学习基石--学习笔记01--linear hard SVM

背景 支持向量机(SVM)背后的数学知识比较复杂,之前尝试过在网上搜索一些资料自学,但是效果不佳。所以,在我的数据挖掘工具箱中,一直不会使用SVM这个利器。最近,台大林轩田老师在Coursera上的机器学习技法课程上有很详细的讲授SVM的原理,所以机会难得,一定要好好把握这次机会,将SVM背后的原理梳理清楚并记录下来。这篇文章总结第一讲linear hard SVM的相关内容。   &n...

机器学习基石--学习笔记01--linear hard SVM
文章 2017-09-06 来自:开发者社区

机器学习技法--学习笔记04--Soft SVM

背景 之前所讨论的SVM都是非常严格的hard版本,必须要求每个点都被正确的区分开。但是,实际情况时很少出现这种情况的,因为噪声数据时无法避免的。所以,需要在hard SVM上添加容错机制,使得可以容忍少量噪声数据。   "软"化问题 软化SVM的思路有点类似正规化,在目标函数添加错误累加项,然后加一个系数,控制对错误的容忍度,并且在约束中添加错误容忍度的约束,形式如下:   ...

机器学习技法--学习笔记04--Soft SVM
文章 2017-02-11 来自:开发者社区

机器学习之深入理解SVM

在浏览本篇博客之前,最好先查看一下我写的另一篇文章机器学习之初识SVM(点击可查阅哦),这样可以更好地为了结以下内容做铺垫! 支持向量机学习方法包括构建由简至繁的模型:线性可分支持向量机、线性支持向量机及非线性支持向量机。当训练数据线性可分时,通过硬间隔最大化,学习一个线性的分类器,即线性可分支持向量机,又称为硬间隔支持向量机;当训练数据近似线性可分时,通过软间隔最大化,也学习一个线性...

文章 2017-02-11 来自:开发者社区

机器学习之初识SVM

本文转载自知乎问题   支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。   支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accur...

文章 2016-05-09 来自:开发者社区

机器学习——支持向量机SVM在R中的实现

支持向量机是一个相对较新和较先进的机器学习技术,最初提出是为了解决二类分类问题,现在被广泛用于解决多类非线性分类问题和回归问题。继续阅读本文,你将学习到支持向量机如何工作,以及如何利用R语言实现支持向量机。 支持向量机如何工作? 简单介绍下支持向量机是做什么的: 假设你的数据点分为两类,支持向量机试图寻找最优的一条线(超平面),使得离这条线最近的点与其他类中的点的距离最大。有些时候,一个...

文章 2014-11-07 来自:开发者社区

机器学习之旅---SVM分类器

本次内容主要讲解什么是支持向量,SVM分类是如何推导的,最小序列SMO算法部分推导。 最后给出线性和非线性2分类问题的smo算法matlab实现代码。 一、什么是支持向量机(Support Vector Machine) 本节内容部分翻译Opencv教程: http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduc...

文章 2014-05-05 来自:开发者社区

【机器学习算法-python实现】svm支持向量机(3)—核函数

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景知识    前面我们提到的数据集都是线性可分的,这样我们可以用SMO等方法找到支持向量的集合。然而当我们遇到线性不可分的数据集时候,是不是svm就不起作用了呢?这里用到了一种方法叫做核函数,它将低维度的数据转换成高纬度的从而实现线性可分。      可能...

文章 2014-05-04 来自:开发者社区

【机器学习算法-python实现】svm支持向量机(2)—简化版SMO算法

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景知识      通过上一节我们通过引入拉格朗日乗子得到支持向量机变形公式。详细变法可以参考这位大神的博客——地址  参照拉格朗日公式F(x1,x2,...λ)=f(x1,x2,...)-λg(x1,x2...)。我们把上面的式子变型为:  约束条件就变成...

文章 2014-04-30 来自:开发者社区

【机器学习算法-python实现】svm支持向量机(1)—理论知识介绍

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      强烈推荐阅读(http://www.cnblogs.com/jerrylead/archive/2011/03/13/1982639.html)          支持向量机SVM(support vector ...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

人工智能平台PAI

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

+关注