R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
贝叶斯回归是一种统计方法,它使用贝叶斯定理来估计回归模型的参数。与传统的频率派回归方法不同,贝叶斯回归提供了参数的后验分布,而不仅仅是点估计。这意味着我们可以得到参数的不确定性度量,而不仅仅是单一的估计值(点击文末“阅读原文”获取完整代码数据)。 相关视频 ...
R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化
通过线性模型和广义线性模型(GLM),预测函数可以返回在观测数据或新数据上预测值的标准误差(点击文末“阅读原文”获取完整代码数据)。 相关视频 然后,利用这些标准误差绘制出拟合回归线周围的置信区间或预...
R语言GAMLSS模型对艾滋病病例、降雪量数据拟合、预测、置信区间实例可视化
GAMLSS模型是一种半参数回归模型,参数性体现在需要对响应变量作参数化分布的假设,非参数性体现在模型中解释变量的函数可以涉及非参数平滑函数,非参数平滑函数不预先设定函数关系,各个解释变量的非线性影响结果完全取决于样本数据。它克服了GAM模型和广义线性模型(Generalized Linear Models, GLM)的一些局限性(点击文末“阅读原文”获取完整代码数据)。 对连...
R语言无套利区间模型期货期现研究:正向套利和反向套利次数、收益率分析华泰柏瑞300ETF可视化
股指期货的套利交易有助于股指期货实现其价格发现以及风险规避的功能,因此提高套利交易的效率,对于发挥股指期货在经济发展中的作用有着重要的意义(点击文末“阅读原文”获取完整代码数据)。 本文帮助客户对期货期现套利的研究。研究中主要以期货及其现货指数的数据为样本,真实的还原了市场,提高了研究的准确性。 统计套利策略 ...
R语言基于Bootstrap的线性回归预测置信区间估计方法分析汽车制动距离|数据分享
阅读全文:http://tecdat.cn/?p=21625 我们知道参数的置信区间的计算,这些都服从一定的分布(t分布、正态分布),因此在标准误前乘以相应的t分值或Z分值。但如果我们找不到合适的分布时,就无法计算置信区间了吗? 幸运的是,有一种方法几乎可以用于计算各种参数的置信区间,这就是Bootstrap 法。 本文使用BOOTSTRAP...
【视频】什么是Bootstrap自抽样及应用R语言线性回归预测置信区间实例|数据分享
全文链接:http://tecdat.cn/?p=21625 自抽样统计是什么以及为什么使用它? 本文将自抽样方法与传统方法进行比较,并了解它为何有用。并在R语言软件中通过对汽车速度和制动距离数据(查看文末了解数据获取方式)进行线性回归预测来实践它。 统计学是从数据中学习的科学。统计知识有助于收集数据的正确方法,使用正确的方法分析数据,并有效地呈现从数...
数据分享|R语言Bootstrap、百分位Bootstrap法抽样参数估计置信区间分析通勤时间和学生锻炼数据
原文链接:http://tecdat.cn/?p=27505 本文展示了如何使用 R 构建Bootstrap自举置信区间的示例。还强调了 R 包 ggplot2 用于图形的用途。但是,在学习Bootstrap程序和 R 语言时,学习如何在没有包的情况下从头开始应用Bootstrap程序有助于更好地理解 R 的工作原理并加强对Bootstrap的概念理解。 具有...
R语言BOOTSTRAP(自举法,自抽样法)估计回归模型置信区间分析股票收益
介绍 假设你做了一个简单的回归,现在你有了你的 . 您想知道它是否与(例如)零显著不同。一般来说,人们会查看他们选择的软件报告的统计数据或 p.value。问题是,这个 p.value 计算依赖于因变量的分布。如果没有不同的说明,您的软...
R语言基于Bootstrap的线性回归预测置信区间估计方法
我们知道参数的置信区间的计算,这些都服从一定的分布(t分布、正态分布),因此在标准误前乘以相应的t分值或Z分值。但如果我们找不到合适的分布时,就无法计算置信区间了吗?幸运的是,有一种方法几乎可以用于计算各种参数的置信区间,这就是Bootstrap 法。 本文使用BOOTSTRAP来获得预测的置信区间。我们将在线性回归基础上讨论。 ...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。