【YOLOv8改进】MobileViT 更换主干网络: 轻量级、通用且适合移动设备的视觉变压器 (论文笔记+引入代码)

YOLO目标检测创新改进与实战案例专栏 专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLO基础解析+创新改进+实战案例 摘要 轻量级卷积神经网络(CNNs)已成为移动视觉任务的事实标准。它们的空间归纳偏差...

【YOLOv8改进】MCA:用于图像识别的深度卷积神经网络中的多维协作注意力 (论文笔记+引入代码)

YOLO目标检测创新改进与实战案例专栏 专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLO基础解析+创新改进+实战案例 摘要 先前的大量研究表明,注意力机制在提高深度卷积神经网络(CNN)的性能方...

企业级云上网络构建

10 课时 |
79 人已学 |
免费

专有云网络基础架构介绍

1 课时 |
472 人已学 |
免费

TCP/IP 网络基础

4 课时 |
1043 人已学 |
免费
开发者课程背景图

【YOLOv8改进】 YOLOv8 更换骨干网络之GhostNetV2 长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干 (论文笔记+引入代码)

YOLO目标检测创新改进与实战案例专栏 专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLO基础解析+创新改进+实战案例 摘要 轻量级卷积神经网络(CNNs)专为移动设备上的应用而设计,具有更快的推...

【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征  (论文笔记+引入代码).md

【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码).md

YOLO目标检测创新改进与实战案例专栏 专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLO基础解析+创新改进+实战案例 摘要 我们提出了SegNeXt,一种用于语义分割的简单卷积网络架构。最近基于变换器的...

【YOLOv8改进】 AFPN :渐进特征金字塔网络 (论文笔记+引入代码).md

YOLO目标检测创新改进与实战案例专栏 专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLO基础解析+创新改进+实战案例 摘要 在目标检测任务中,多尺度特征对于编码具有尺度变化的对象至关重要。采用经典的自顶...

【YOLOv8改进】BiFPN:加权双向特征金字塔网络 (论文笔记+引入代码)

YOLO目标检测创新改进与实战案例专栏 专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLO基础解析+创新改进+实战案例 摘要 在计算机视觉领域,模型效率的重要性日益增加。在本文中,我们系统地研究了用于目标...

【传知代码】从零开始搭建图像去雾神经网络-论文复现

【传知代码】从零开始搭建图像去雾神经网络-论文复现

本文涉及的源码可从从零开始搭建图像去雾神经网络该文章下方附件获取 本文复现了一种简单而有效的基于集成学习的双分支非均匀去雾神经网络。该方法使用一个双分支神经网络分别处理上述问题,然后通过一个可学习的融合尾映射它们的不同特征。论文地址:https://arxiv.org/pdf/2104.08902....

【传知代码】图神经网络长对话理解-论文复现

【传知代码】图神经网络长对话理解-论文复现

本文涉及的源码可从图神经网络长对话理解该文章下方附件获取 论文:Conversation Understanding using Relational Temporal Graph Neural Networks with Auxiliary Cross-Modality Interaction原文...

想要了解图或图神经网络?没有比看论文更好的方式,面试阿里国际站运营一般会问什么

正文 Paper:https://arxiv.org/abs/1805.10988 Python Reference:https://github.com/SeongokRyu/Molecular-GAT Compound-protein Interaction Prediction with En...

yolov7论文学习——创新点解析、网络结构图

yolov7论文学习——创新点解析、网络结构图

创新点 1、提出了E-ELAN,但是只在yolov7-e6e中使用到。2、yolov7基于拼接模型的缩放方法,在yolov7x中使用到。3、将重参数化卷积应用到残差模块中或者用到基于拼接的模块中去。RepConvN4、提出了两种新的标签分配方法 一、ELAN和E-ELAN 1、 ELAN yolov...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

社区圈子

域名解析DNS
域名解析DNS
关注DNS技术、标准、产品和行业趋势,连接国内外相关技术社群信息,加强信息共享。
58+人已加入
加入
相关电子书
更多
客户实践分享:飞书深诺的出海网络演进之路
深度学习论文实现:空间变换网络-第一部分
深度学习论文实现:空间变换网络-第一部分
立即下载 立即下载 立即下载