文章 2023-05-22 来自:开发者社区

全新FPN | 通道增强特征金字塔网络(CE-FPN)提升大中小目标检测的鲁棒性(文末附论文)(二)

3 本文方法3.1 overall网络架构图整体网络架构如图所示。根据FPN的设置,CE-FPN生成一个4级特征金字塔。表示主干的输出为,它们相对于输入图像有像素的stride。是经过卷积后,Channel Redection后256维度的特征。特征金字塔是通过FPN中的自上而下通路产生的。作者去掉了和的节点,这2个节点是FPN原始的具有语义信息的最高级特征。因为提出的方法充分利用了来自的Cha....

全新FPN | 通道增强特征金字塔网络(CE-FPN)提升大中小目标检测的鲁棒性(文末附论文)(二)
文章 2023-05-22 来自:开发者社区

全新FPN | 通道增强特征金字塔网络(CE-FPN)提升大中小目标检测的鲁棒性(文末附论文)(一)

1 简介特征金字塔网络(FPN)已成为目标检测中提取多尺度特征的有效框架。然而,目前FPN-based的方法大多存在Channel Reduction的固有缺陷,导致语义信息的丢失。而融合后的各种特征图可能会造成严重的混叠效果。本文提出了一种新的通道增强特征金字塔网络(CE-FPN),该网络由3个简单而有效的模块组成。具体来说,受亚像素卷积的启发,提出了一种既实现Channel增强又实现上采样的....

全新FPN | 通道增强特征金字塔网络(CE-FPN)提升大中小目标检测的鲁棒性(文末附论文)(一)
文章 2023-05-22 来自:开发者社区

涨点技巧 | 旷视孙剑等人提出i-FPN:用于目标检测的隐式特征金字塔网络(文末获取论文)(二)

4 实验4.1 MS COCO 2017实验结果i-FPN的表现远远优于原始FPN。i-FPN提高了平均AP +3.4(RetinaNet)、+3.2(Faster RCNN)、+3.5(FCOS)、+4.2(ATSS)、+3.2(AutoAssign)。下图为在COCO2017-val数据集的几个示例图像,显示了使用FPN和i-FPN获得的特征映射之间的比较结果:可以很容易地发现FPN产生的特....

涨点技巧 | 旷视孙剑等人提出i-FPN:用于目标检测的隐式特征金字塔网络(文末获取论文)(二)
文章 2023-05-22 来自:开发者社区

涨点技巧 | 旷视孙剑等人提出i-FPN:用于目标检测的隐式特征金字塔网络(文末获取论文)(一)

1 简介我们都知道一个典型的基于卷积神经网络的目标检测器主要由3个部分组成:Backbone、Neck和Head;主干部分(如VGG、ResNet或EfficientNet等)主要是从输入图像中提取基本特征,这些Backbone模型通常都会事先在ImageNet上进行预训练。Neck主要是用来产生High-Level的语义特征。检测Head则是将Neck产生的Hight-level特征进行最终分....

涨点技巧 | 旷视孙剑等人提出i-FPN:用于目标检测的隐式特征金字塔网络(文末获取论文)(一)
文章 2023-05-17 来自:开发者社区

【论文解读】CVPR2020|CentripetalNet:目标检测新网络COCO 48%AP超现所有Anchor-free网络(二)

3CentripetalNet网络结构上图为centrpetalnet的核心结构。Centrpetalnet由四个模块组成,分别是角点预测模块、向心移位模块、交叉星可变形卷积模块和实例掩码头模块。工作原理首先基于Centernet pipline生成角点候选对象。对于所有的角点候选项,引入向心移位算法来追求高质量的角点对并生成最终的预测边界框。向心偏移模块预测角点的向心偏移,并匹配角对,这些对角....

【论文解读】CVPR2020|CentripetalNet:目标检测新网络COCO 48%AP超现所有Anchor-free网络(二)
文章 2023-05-17 来自:开发者社区

【论文解读】CVPR2020|CentripetalNet:目标检测新网络COCO 48%AP超现所有Anchor-free网络(一)

1引言摘要:基于关键点的检测器性能还不错,不过匹配错关键点的情况还是经常发生,并极大地影响了探测器的性能。作者在这篇文章中提出一种使用向心偏移来对同一实例中的角点进行配对的CentripetalNet向心网络。向心网络可以预测角点的位置和向心偏移,并匹配移动结果对齐的角。结合位置信息,这种方法比传统的嵌入方法更准确地匹配角点。角池将边界框内的信息提取到边界上。为了使这些信息在角落里更容易被察觉,....

【论文解读】CVPR2020|CentripetalNet:目标检测新网络COCO 48%AP超现所有Anchor-free网络(一)
文章 2023-05-13 来自:开发者社区

深度学习经典网络解析目标检测篇(二):Fast R-CNN

阅读此博客建议先了解R-CNN,R-CNN详解见博客:深度学习经典网络解析目标检测篇(一):R-CNNFast R-CNN论文翻译详情见我的博客:深度学习论文阅读目标检测篇(二):Fast R-CNN《Fast R-CNN》1.背景介绍  2014年R-CNN横空出世,首次将卷积神经网络带入目标检测领域。受SPPnet启发,rbg在15年发表Fast R-CNN,它的构思精巧,流程更为....

深度学习经典网络解析目标检测篇(二):Fast R-CNN
文章 2023-05-13 来自:开发者社区

深度学习经典网络解析目标检测篇(一):R-CNN

R-CNN论文详情见我的博客:深度学习论文阅读(七):R-CNN《Rich feature hierarchies for accurate object detection and semantic segmentation》1.背景介绍  目标检测(Object Detection) 就是一种基于目标几何和统计特征的图像分割,它将目标的分割和识别合二为一,通俗点说就是给定一张图片要....

深度学习经典网络解析目标检测篇(一):R-CNN
文章 2023-05-11 来自:开发者社区

【Pytorch神经网络实战案例】26 MaskR-CNN内置模型实现目标检测

1 Pytorch中的目标检测内置模型在torchvision库下的modelsldetecton目录中,找到__int__.py文件。该文件中存放着可以导出的PyTorch内置的目标检测模型。2 MaskR-CNN内置模型实现目标检测2.1 代码逻辑简述将COCO2017数据集上的预训练模型maskrcnm_resnet50_fpn_coco加载到内存,并使用该模型对图片进行目标检测。2.2 ....

【Pytorch神经网络实战案例】26 MaskR-CNN内置模型实现目标检测
文章 2023-05-11 来自:开发者社区

【Pytorch神经网络理论篇】 33 基于图片内容处理的机器视觉:目标检测+图片分割+非极大值抑制+Mask R-CNN模型

同学你好!本文章于2021年末编写,获得广泛的好评!故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现,Pytorch深度学习·理论篇(2023版)目录地址为:CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通....

【Pytorch神经网络理论篇】 33 基于图片内容处理的机器视觉:目标检测+图片分割+非极大值抑制+Mask R-CNN模型

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

域名解析DNS

关注DNS技术、标准、产品和行业趋势,连接国内外相关技术社群信息,加强信息共享。

+关注