基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络

基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络

1.算法运行效果图预览 2.算法运行软件版本MATLAB2022A 3.算法理论概述 时间序列预测是数据分析中的一个重要分支,它涉及到对未来事件的预测,基于历史数据中的模式和趋势。在深度学习领域,卷积神经网络(CNN)和循环神经网络(RNN)的组合,特别是结合长短时记忆单元(LSTM)或门控循环单元...

ATFNet:长时间序列预测的自适应时频集成网络

ATFNet:长时间序列预测的自适应时频集成网络

ATFNet是一个深度学习模型,它结合了时间域和频域模块来捕获时间序列数据中的依赖关系。引入了一种新的加权机制来调整周期性的权重,增强了离散傅立叶变换,并包括一个复杂关系识别的注意力机制,在长期时间序列预测中优于当前方法(每个模型都这么说)。这是4月发布在arxiv上的论文,还包含了源代码。 因为时...

企业级云上网络构建

10 课时 |
922 人已学 |
免费

专有云网络基础架构介绍

1 课时 |
788 人已学 |
免费

TCP/IP 网络基础

4 课时 |
1110 人已学 |
免费
开发者课程背景图
R语言神经网络模型金融应用预测上证指数时间序列可视化

R语言神经网络模型金融应用预测上证指数时间序列可视化

本文旨在利用神经网络模型来帮助客户预测上证指数的收盘价,通过分析不同历史数据作为输入,建立模型并进行预测(点击文末“阅读原文”获取完整代码数据)。 相关视频 ...

R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告

R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告

用于R语言的多层感知器(MLP)和极限学习机(ELM)进行时间序列预测。请注意,由于神经网络无法利用GPU处理,因此大型网络的训练速度往往很慢(点击文末“阅读原文”获取完整代码数据)。 相关视频 ...

BiTCN:基于卷积网络的多元时间序列预测

BiTCN:基于卷积网络的多元时间序列预测

在时间序列预测领域中,模型的体系结构通常依赖于多层感知器(MLP)或Transformer体系结构。 基于mlp的模型,如N-HiTS, TiDE和TSMixer,可以在保持快速训练的同时获得非常好的预测性能。基于Transformer的模型,如PatchTST和ittransformer也取得了很...

R语言神经网络模型预测多元时间序列数据可视化

R语言神经网络模型预测多元时间序列数据可视化

全文链接:http://tecdat.cn/?p=32198 多元时间序列建模一直是吸引了来自经济,金融和交通等各个领域的研究人员的主题(点击文末“阅读原文”获取完整代码数据)。 多元时间序列预测的一个基本假设是,其变量相互依赖。 在本文中,我们专门针对客户的多元时间序列数据设计了神经网络框架,拟合...

Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析

Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析

全文链接:http://tecdat.cn/?p=32059 分析师:Eileen 电力系统源源不断向各用户提供持续稳定的电能,本文通过对数据的提取,帮助客户分别对不同客户端日,月,年的用电负荷情况进行分析,并通过模型对单户负荷情况进行预测(点击文末“阅读原文”获取完整数据)。 解决方案 ...

Python用Lstm神经网络、离散小波转换DWT降噪对中压电网电压时间序列预测

Python用Lstm神经网络、离散小波转换DWT降噪对中压电网电压时间序列预测

全文链接:http://tecdat.cn/?p=31149 对于电力公司来说,对局部放电的准确预测可以显著降低人力物力成本。据调查,80%的输电设备损坏是随机发生的,而只有20%由于老化。 而损坏案例中又有85%是由于局部放电现象的发生。电厂98%的维护费用于支付维修师的薪资。因此,准确的预测电网...

R语言用ARIMA模型滑动时间窗口识别网络流量时间序列异常值

R语言用ARIMA模型滑动时间窗口识别网络流量时间序列异常值

全文链接:http://tecdat.cn/?p=30597 最近我们被要求解决时间序列异常检验的问题。有客户在使用大量的时间序列。这些时间序列基本上是每10分钟进行一次的网络测量,其中一些是周期性的(即带宽),而另一些则不是(即路由流量)(点击文末“阅读原文”获取完整代码数据)。 他想要一个简单的...

PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子

PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子

全文下载链接:http://tecdat.cn?p=26519 一个简单的编码器-解码器LSTM神经网络应用于时间序列预测问题:预测天然气价格,预测范围为 10 天。“进入”时间步长也设置为 10 天。) 只需要 10 天来推断接下来的 10 天。可以使用 10 天的历史数据集以在线学习的方式重新训...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

社区圈子

域名解析DNS
域名解析DNS
关注DNS技术、标准、产品和行业趋势,连接国内外相关技术社群信息,加强信息共享。
58+人已加入
加入
相关电子书
更多
客户实践分享:飞书深诺的出海网络演进之路
Deep Dive:网络可观测与诊断
Deep Dive:应用交付网络架构设计
立即下载 立即下载 立即下载