深度学习笔记8:利用Tensorflow搭建神经网络
在笔记7中,笔者和大家一起入门了 Tensorflow 的基本语法,并举了一些实际的例子进行了说明,终于告别了使用 numpy 手动搭建的日子。所以我们将继续往下走,看看如何利用 Tensorflow 搭建神经网络模型。 尽管对于初学者而言使用 Tensorflow 看起来并不那么习惯,需要各种步骤,但简单来说,Tensorflow 搭建模型实际就是两个过程:创建计算图和执行计算图。在 dee.....
学习笔记CB014:TensorFlow seq2seq模型步步进阶
神经网络。《Make Your Own Neural Network》,用非常通俗易懂描述讲解人工神经网络原理用代码实现,试验效果非常好。 循环神经网络和LSTM。Christopher Olah http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 。 seq2seq模型基于循环神经网络序列到序列模型,语言翻译、自动问答等序列到序列....
【深度学习笔记】(三)Tensorflow on Android
【深度学习笔记】(三)Tensorflow on Android 一、准备好Android Studio及预先训练好的模型pb文件 二、新建Android项目A并将pb模型放到assets文件夹 三、添加libandroid_tensorflow_inference_java.jar到项目A的libs文件夹、添加libtensorflow_inference.so到项目A的libs\arm...
【深度学习笔记】(二)Hello, Tensorflow!
【深度学习笔记】(二)Hello, Tensorflow! 一、安装 官方安装的方式很多种,本文采用Docker方式。Docker的深入使用文案很长很多,但我们都不需要,我们的主要目的还是Tensorflow,所以只需要基本的使用即可。PS:打开Tensorflow官网,,所以用Docker来安装Tensorflow就是为了绕墙而走。 1、Docker安装 首先就是点我下载安装包,打开页面看到很....
学习笔记TF066:TensorFlow移动端应用,iOS、Android系统实践
TensorFlow对Android、iOS、树莓派都提供移动端支持。 移动端应用原理。移动端、嵌入式设备应用深度学习方式,一模型运行在云端服务器,向服务器发送请求,接收服务器响应;二在本地运行模型,PC训练模型,放到移动端预测。向服务端请求数据可行性差,移动端资源稀缺。本地运行实时性更好。加速计算,内存空间和速度优化。精简模型,节省内存空间,加快计算速度。加快框架执行速度,优化模型复杂度和每步....
学习笔记TF063:TensorFlow Debugger
TensorFlow Debugger(tfdbg),TensorFlow专用调试器。用断点、计算机图形化展现实时数据流,可视化运行TensorFlow图形内部结构、状态。有助训练推理调试模型错误。https://www.tensorflow.org/programmers_guide/debugger 。 常见错误类型,非数字(nan)、无限值(inf)。tfdbg命令行界面(command ....
学习笔记TF062:TensorFlow线性代数编译框架XLA
XLA(Accelerated Linear Algebra),线性代数领域专用编译器(demain-specific compiler),优化TensorFlow计算。即时(just-in-time,JIT)编译或提前(ahead-of-time,AOT)编译实现XLA,有助于硬件加速。XLA还在试验阶段。https://www.tensorflow.org/versions/master/e....
学习笔记TF061:分布式TensorFlow,分布式原理、最佳实践
分布式TensorFlow由高性能gRPC库底层技术支持。Martin Abadi、Ashish Agarwal、Paul Barham论文《TensorFlow:Large-Scale Machine Learning on Heterogeneous Distributed Systems》。 分布式原理。分布式集群 由多个服务器进程、客户端进程组成。部署方式,单机多卡、分布式(多机多卡)。....
TensorFlow学习笔记之五——源码分析之最近算法
import numpy as np import tensorflow as tf # Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) #这里主要是导入数据,数据通过input_data.py已经下载到/tmp/data/目录之下了,这里下载数据.....
TensorFlow学习笔记之四——源码分析之基本操作
例子源码地址: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1%20-%20Introduction/basic_operations.py 根据网上的入门例子,一点点的熟悉代码和TensorFlow。对这个基本的例子,做一个注释,备忘之余分享给同样入门的初学者。 import tenso...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
TensorFlow更多学习笔记相关
TensorFlow您可能感兴趣
- TensorFlow图像识别
- TensorFlow人工智能
- TensorFlow keras
- TensorFlow网络
- TensorFlow卷积
- TensorFlow算法
- TensorFlow深度学习
- TensorFlow开源
- TensorFlow构建
- TensorFlow谷歌
- TensorFlow模型
- TensorFlow机器学习
- TensorFlow教程
- TensorFlow实战
- TensorFlow python
- TensorFlow神经网络
- TensorFlow安装
- TensorFlow训练
- TensorFlow框架
- TensorFlow pytorch
- TensorFlow api
- TensorFlow版本
- TensorFlow实践
- TensorFlow学习
- TensorFlow ai
- TensorFlow gpu
- TensorFlow代码
- TensorFlow入门
- TensorFlow数据集
- TensorFlow分类
人工智能
了解行业+人工智能最先进的技术和实践,参与行业+人工智能实践项目
+关注