SOFTS: 时间序列预测的最新模型以及Python使用示例

SOFTS: 时间序列预测的最新模型以及Python使用示例

近年来,深度学习一直在时间序列预测中追赶着提升树模型,其中新的架构已经逐渐为最先进的性能设定了新的标准。 这一切都始于2020年的N-BEATS,然后是2022年的NHITS。2023年,PatchTST和TSMixer被提出,最近的iTransformer进一步提高了深度学习预测模型的性能。 这是...

python时间序列异常检测ADTK

python时间序列异常检测ADTK

python时间序列异常检测ADTK 1. adtk简介 智能运维AIOps的数据基本上都是时间序列形式的,而异常检测告警是AIOps中重要组成部分。笔者最近在处理时间序列数据时有使用到adtk这个python库,在这里和大家做下分享。 什么是adtk? adtk(Anomaly Detection...

高校精品课-华东师范大学 - Python数据科学基础与实践

101 课时 |
661 人已学 |
免费

【科技少年】Python基础语法

24 课时 |
1454 人已学 |
免费

【科技少年】Python绘画编程第一课

20 课时 |
3313 人已学 |
免费
开发者课程背景图
Python自激励阈值自回归(SETAR)、ARMA、BDS检验、预测分析太阳黑子时间序列数据

Python自激励阈值自回归(SETAR)、ARMA、BDS检验、预测分析太阳黑子时间序列数据

全文链接 :https://tecdat.cn/?p=33896 这篇文章展示了自激励阈值自回归SETAR的使用,用于分析经常被客户研究的太阳黑子数据集。具体而言,研究SETAR模型的估计和预测(点击文末“阅读原文”获取完整代码数据)。 我们在这里考虑原始的太阳黑子序列以拟合ARMA示例,尽管文献中...

Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享

Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享

全文链接:https://tecdat.cn/?p=33885 本文描述了帮助客户使用马尔可夫链蒙特卡洛(MCMC)方法通过贝叶斯方法估计基本的单变量随机波动模型,就像Kim等人(1998年)所做的那样(点击文末“阅读原文”获取完整代码数据)。 定义模型以及从条件后验中抽取样本的函数的代码也在Pyt...

【Python机器学习专栏】时间序列数据的特征工程

在机器学习领域,时间序列数据是一种特殊类型的数据,它按照时间顺序排列,通常用于分析和预测时间序列中的模式、趋势或周期性。特征工程是提升模型性能的关键步骤,特别是在时间序列分析中,正确的特征可以帮助模型捕捉和理解数据的动态特性。本文将探讨时间序列数据的特征工程方法,并展示如何在Python中实现这些技...

Python用 tslearn 进行时间序列聚类可视化

Python用 tslearn 进行时间序列聚类可视化

全文链接:https://tecdat.cn/?p=33484 我们最近在完成一些时间序列聚类任务,偶然发现了 tslearn 库。我很想看看启动和运行 tslearn 已内置的聚类有多简单,结果发现非常简单直接(点击文末“阅读原文”获取完整代码数据)。 首先,让我们导入我们需要的库: ...

Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析

Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析

全文链接:https://tecdat.cn/?p=33398 金融市场的股票价格时间序列分析一直以来都是投资者和研究者关注的主题之一。准确预测股票价格的趋势对于制定有效的投资策略和决策具有重要意义。因此,许多研究人员使用各种统计方法和模型来分析和预测股票价格的变动(点击文末“阅读原文”获取完整代码...

Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析

Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析

全文链接:http://tecdat.cn/?p=32059 分析师:Eileen 电力系统源源不断向各用户提供持续稳定的电能,本文通过对数据的提取,帮助客户分别对不同客户端日,月,年的用电负荷情况进行分析,并通过模型对单户负荷情况进行预测(点击文末“阅读原文”获取完整数据)。 解决方案 ...

Python用Lstm神经网络、离散小波转换DWT降噪对中压电网电压时间序列预测

Python用Lstm神经网络、离散小波转换DWT降噪对中压电网电压时间序列预测

全文链接:http://tecdat.cn/?p=31149 对于电力公司来说,对局部放电的准确预测可以显著降低人力物力成本。据调查,80%的输电设备损坏是随机发生的,而只有20%由于老化。 而损坏案例中又有85%是由于局部放电现象的发生。电厂98%的维护费用于支付维修师的薪资。因此,准确的预测电网...

PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子

PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子

全文下载链接:http://tecdat.cn?p=26519 一个简单的编码器-解码器LSTM神经网络应用于时间序列预测问题:预测天然气价格,预测范围为 10 天。“进入”时间步长也设置为 10 天。) 只需要 10 天来推断接下来的 10 天。可以使用 10 天的历史数据集以在线学习的方式重新训...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

社区圈子

Python学习站
Python学习站
Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。
698+人已加入
加入
相关电子书
更多
给运维工程师的Python实战课
Python 脚本速查手册
ACE 区域技术发展峰会:Flink Python Table API入门及实践
立即下载 立即下载 立即下载