广告深度学习计算:召回算法和工程协同优化的若干经验(二)
▐ 路径二:索引扁平化模型1. 模型结构介绍此模型将原本 TDM 模型中十余层的二叉树索引压缩到了三四层,第一层展开为数千节点,之后每一层按照十几的度展开。我们从第二层开始进行 beam search ,总共经过若干轮模型打分以及 TopK 的筛选,每次模型打分的数量在数万,如图所示。相比于 TDM 模型,打分轮数减少了23倍,而每轮打分的广告数扩充了46倍。为了拿到更精准的打分结果,算法上在原....

广告深度学习计算:召回算法和工程协同优化的若干经验(一)
▐ 背景阿里妈妈展示广告召回大多采用 Tree-based Deep Model(以下简称TDM)模型,它通过对候选广告的聚类,构造了深达十余层的二叉树索引,并使用 beam search 在此索引上进行检索[1]。由于线上服务的 latency 约束及当时的硬件算力限制使我们不能直接对整个候选集(百万甚至千万量级)进行模型打分。随着近几年硬件(GPU & ASIC)的发展,我们在模型上....

Sentinel-Go 源码系列(三)滑动时间窗口算法的工程实现
要说现在工程师最重要的能力,我觉得工程能力要排第一。就算现在大厂面试经常要手撕算法,也是更偏向考查代码工程实现的能力,之前在群里看到这样的图片,就觉得很离谱(大概率是假的~)。算法与工程实现在 Sentinel-Go 中,一个很核心的算法是流控(限流)算法。流控可能每个人都听过,但真要手写一个,还是有些困难。为什么流控算法难写?以我的感觉是算法和工程实现上存在一定差异,虽然算法好理解,但却没法照....

面向B端算法实时业务支撑的工程实践
技术选型为什么要选择Blink?大部分离线场景如果对于时效性没有要求,或者数据源是Batch模式的,非Streaming的(比如TT、SLS、SWIFT、顺序)等,这个场景的话选择ODPS就比较不错;总体来说,数据源是实时的(如TT/SLS/SWIFT)、需要顺序读取ODPS、对时效性要求高的场景,选择Blink是比较好的;Blink目前也是支持Batch模式和Steaming模式。Batch模....

面向B端算法实时业务支撑的工程实践
作者 | 茂道来源 | 阿里技术公众号一 背景在营销场景下,算法同学会对广告主提供个性化的营销工具,帮助广告主更好的精细化营销,在可控成本内实现更好的ROI提升。我们在这一段时间支持了多个实时业务场景,比如出价策略的实时化预估、关键词批量服务同步、实时特征等场景,了解到业务侧同学来说,针对ODPS场景来说大部分可以灵活使用,但对于Blink使用还有不足,我们这里针对场景积累了一些经验,希望对大.....

落地一个算法,实现了GPU加速机器学习的工程落地,从实际的业务效果来看还证明了什么?
落地一个算法,实现了GPU加速机器学习的工程落地,从实际的业务效果来看还证明了什么?
AI·OS新探索:端到端算法工程平台
特邀嘉宾:张迪--阿里巴巴集团资深技术专家视频地址:https://yunqi.aliyun.com/2020/session54?liveId=44646 AI驱动淘宝搜索、推荐、广告技术的深入发展 今天你在淘宝上所看到的大量的内容,都已经是千人前面的个性化,其中搜索推荐广告业务作为核心的内容分发形态,在这其中发挥了重要的作用。在过去的5年,以深度学习技术为代表的AI技术成为搜索推荐广告业务突....

高德算法工程一体化实践和思考
背景随着高德地图业务的快速开展,除了导航本身的算法业务外,其他中小型业务对算法策略的需求越来越多、越来越快,近两年参与的一些新项目从算法调研到应用上线都在一周级,例如与共享出行相关的各种算法服务,风控、调度、营销等各个体系的业务需求。类似于传统导航中成熟的长周期、高流量、低时延的架构和开发方式已无法满足此类业务初期的快速试错和优化改进诉求,找到合适的为业务赋能的算法服务方式就变得势在必行。 在落....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
智能搜索推荐
智能推荐(Artificial Intelligence Recommendation,简称AIRec)基于阿里巴巴大数据和人工智能技术,以及在电商、内容、直播、社交等领域的业务沉淀,为企业开发者提供场景化推荐服务、全链路推荐系统开发平台、工程引擎组件库等多种形式服务,助力在线业务增长。
+关注