文章 2024-04-03 来自:开发者社区

Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)

前言: 决策树是一种经典的机器学习算法,用于解决分类和回归问题。它的基本思想是通过对数据集中的特征进行递归划分,构建一系列的决策规则,从而生成一个树状结构。在决策树中,每个内部节点表示对输入特征的一个测试,每个分支代表一个测试结果,而每个叶子节点表示一个类别或输出值。 决策树的发展历史可以追溯到20世纪50年代和60年代。最早的决策树算法是ID3(Iterative Dichot...

Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
文章 2024-03-05 来自:开发者社区

实现机器学习算法(如:决策树、随机森林等)。

实现机器学习算法,比如决策树和随机森林,通常可以按照以下步骤进行: 准备数据:首先,需要有一个数据集,可以是已有的数据或者自己收集和整理的数据。确保数据集具有特征(自变量)和目标变量(因变量)。数据预处理:对数据进行清洗、缺失值处理、特征缩放等...

文章 2024-01-29 来自:开发者社区

机器学习 - [源码实现决策树小专题]决策树中,信息增益、信息增益率计算以及最佳特征挑选的Python实现

信息增益、信息增益率计算 以及 最佳特征挑选 的Python实现导读:决策树是一种基于信息的学习算法。在决策树算法中需要不断地挑选出最佳特征,而挑选最佳特征地依据就是信息增益率。增益本身就具有相对地特性,表征某事物从一个状态到另一个状态后,某个指标的变化量。在决策树算法中,信息增益指的是依据某个特征的取值划分数据集时,数据集划分后相对于划分前,所能导致减少的信息不确定度。这也就是说信息增益即不确....

文章 2024-01-29 来自:开发者社区

机器学习 - [源码实现决策树小专题]决策树中子数据集的划分(不允许调用sklearn等库的源代码实现)

决策树算法中子数据集的划分推荐: 本文中的代码另外有采用了TypeScript/JavaScript进行实现的版本。作者关注到,谷歌TensorFlow团队近几年在JavaScript语言上动作频频,自推出同接口的JavaSccript版本TensorFlow.js后,在2020年先后右推出与Pandas同接口的JavaScript版本库"Danfo.js",同时配套推出了一个类似于Jupyte....

机器学习 - [源码实现决策树小专题]决策树中子数据集的划分(不允许调用sklearn等库的源代码实现)
文章 2023-12-26 来自:开发者社区

机器学习——决策树模型

谈起过年回家的年轻人最怕什么、最烦什么?无外乎就是面对那些七大姑、八大姨的催结婚、催生子、催相亲、催买房……说起这些亲戚们是如何判断催什么,不得不让我们想起经典的决策树模型。 决策树是一个用于分类和回归的机器学习模型。通过对输入对象数据特征进行一系列条件划分构建一个树状结构的决策模型。每个内部节点表示一个特征或属性,每个分支代表该特征的一个可能取值,而每个叶节点代表一个类别标签或数值输出。我...

机器学习——决策树模型
文章 2023-12-20 来自:开发者社区

【Python机器学习】决策树、逻辑回归、神经网络等模型对电信用户流失分类实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~电信用户流失分类该实例数据来自kaggle,它的每一条数据为一个用户的信息,共有21个有效字段,其中最后一个字段Churn标志该用户是否流失1:数据初步分析 可用pandas的read_csv()函数来读取数据,用DataFrame的head()、shape、info()、duplicated()、nunique()等来初步观察数据。....

【Python机器学习】决策树、逻辑回归、神经网络等模型对电信用户流失分类实战(附源码和数据集)
文章 2023-12-20 来自:开发者社区

【Python机器学习】决策树、K近邻、神经网络等模型对Kaggle房价预测实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~超参数调优超参数调优需要依靠试验的方法,以及人的经验。对算法本身的理解越深入,对实现算法的过程了解越详细,积累了越多的调优经验,就越能够快速准确地找到最合适的超参数试验的方法,就是设置了一系列超参数之后,用训练集来训练并用验证集来检验,多次重复以上过程,取效果最好的超参数。训练数据的划分可以采用保持法,也可以采用K-折交叉验证法。超参数调优的试....

【Python机器学习】决策树、K近邻、神经网络等模型对Kaggle房价预测实战(附源码和数据集)
文章 2023-12-20 来自:开发者社区

【Python机器学习】朴素贝叶斯分类的讲解及预测决策实战(图文解释 附源码)

需要代码请点赞关注收藏后评论区留言私信~~~朴素贝叶斯分类朴素贝叶斯(naïve Bayes)分类是基于贝叶斯定理与特征条件独立假定的分类方法。设试验E的样本空间为S,A为E的事件,B_1,B_2,⋯,B_n为S的一个划分,且P(A)>0,P(B_i)>0(i=1,2,…,n),则贝叶斯公式为:P(B_i)称为先验概率,即分类B_i发生的概率,它和条件概率P(A│B_i)可从样本集中....

【Python机器学习】朴素贝叶斯分类的讲解及预测决策实战(图文解释 附源码)
文章 2023-12-20 来自:开发者社区

【Python机器学习】决策树与随机森林的讲解及决策树在决策决策问题中实战(图文解释 附源码)

需要源码请点赞关注收藏后评论区留言私信~~~在生活中人们经常应用决策树的思想来做决定 分类的建模过程与上面做决定的过程相反,事先不知道人们的决策思路,需要通过人们已经做出的大量决定来“揣摩”出其决策思路,也就是通过大量数据来归纳道理。当影响决策的因素较少时,人们可以直观地从训练样本中推测出相亲决策思路,从而了解此人的想法。当样本和特征数量较多时,且训练样本可能出现冲突,人就难以胜任建立模型的任务....

【Python机器学习】决策树与随机森林的讲解及决策树在决策决策问题中实战(图文解释 附源码)
文章 2023-12-20 来自:开发者社区

【机器学习】算法术语、决策函数、概率模型、神经网络的详细讲解(图文解释)

一、机器学习算法术语1)数据集(Data Set),训练集(Training Set),验证集(Validation Set)和测试集(Test Set)数据集分为训练数据和测试数据。测试数据集合即为测试集,是需要应用模型进行预测的那部分数据,是机器学习所有工作的最终服务对象。为了防止训练出来的模型只对训练数据有效,一般将训练数据又分为训练集和验证集,训练集用来训练模型,而验证集一般只用来验证模....

【机器学习】算法术语、决策函数、概率模型、神经网络的详细讲解(图文解释)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。